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Purpose of the course 

•  Give you a deep understanding of the 
mechanics of software exploitation 

•  Prepare you to identify vulnerabilities in 
software source code 

•  Help you understand the how and why of 
exploit mitigation technology 

•  Depth not breadth. We will cover a few key 
concepts deeply, rather than covering many 
topics briefly. 



Course Outline 1 

•  Basic stack overflows 
•  Shellcode 
•  More on stack overflows 
•  Heaps and Heap overflows 



Course outline 2 

•  Other Vulnerable Scenarios 
•  Recognizing vulnerabilities 
•  Finding Vulnerabilities 
•  Exploit mitigation technology 



General Course Comments 

•  Lab driven course 
•  Learn by doing, not by reading/seeing. Please 

put effort into the labs/challenges. Ask 
questions, work together. This is how you will 
really understand the material. 

•  Working mainly in Linux environment (its 
easier), but all of the concepts transfer to the 
Windows environment as well. 



Do not use the information you have gained 
in this Boot Camp to target or compromise 

systems without approval and authority 

Disclaimer 



Lets get down to business 



What are we trying to achieve? 

•  Arbitrary code execution 
•  Examples 

– Forcing ssh to give you root access to the power 
grid (like Trinity in the previous slide!) 

– Turning your vanilla HTTP session with a web 
server into a root shell session. 

– Forcing a privileged administrator process to 
execute code your normally wouldn’t be able to. 

– Etc…. 
  



You are presented with the following program…. 

This worked in the movies… 

What arbitrary code execution do we want? Go_shell() would be nice! 



Real life 

Sayyyyy what? 



x86 Review Lab 
•  The EBP register points to the base of the stack 

frame. Local variables, which are stored on the 
stack, are referenced via this base pointer. 

•  Every time a function is called, a new stack frame 
is setup so that the function has its own fresh 
context (its own clean set of local variables). 

•  The call instruction also puts a return address on 
the stack so that the function knows where to 
return execution to. 

•  Key point: local function variables are stored in 
the same place where return addresses are. 



Boring…. Let’s investigate 

Stack (grows downwards) 

Junk 

Junk 

Junk 

Junk  

Junk 

Junk 

Junk 

Main() just called 



Stack (grows downwards) 

Return address into main 

Main’s saved frame pointer 
(ebp) 
Char password[64]; 

Junk  

Junk 

Junk 

Junk 

Authorize() just called 

The top of authorize()’s stack frame 
stores main()’s saved frame pointer 
(0xbffff5f8) as well as the return address 
to return execution too once authorize() 
is finished (0x080483b) 



Stack (grows downwards) 

Return address into main 

Main’s saved frame pointer 
(ebp) 
“password” 

Junk  

Junk 

Junk 

Junk 

Authorize() just called 

Notice the 64 byte difference between 
the top of the stack (esp) and the base of 
the frame (ebp). These are the 64 bytes 
we created to store password. Also worth 
noting is that where password is stored 
on the stack is 68 bytes away from the 
saved return address into main… 



What if password is more than the 64 bytes than we allocated for it on the stack? 

The instruction pointer ends up pointing to 0x41414141, which is “AAAA.” This means  
we can cause arbitrary code execution since we can set the instruction pointer. 



Since 0x41414141 is arbitrary, we have achieved our goal of “Arbitrary code execution.”  
However, 0x41414141 isn’t very useful since it just crashes the program  
(because 0x41414141 points to nowhere). Remember what we want to achieve is execution 
of go_shell() since that does something useful (gives us administrator access). 
 
To achieve this, we first fill up the password[64] buffer with 64 bytes of junk, then 4 extra 
bytes of junk to overwrite the saved frame pointer, and then also write 4 bytes representing 
the address of go_shell().  



Oh, Yeahh we corrupted that stack! We are now executing go_shell()’s code! 



It’s more useful for us to put this all together outside of a debugger.  

The unix pipe “|” is to redirect output of our command (cat payload;cat) and use it as  
The input for simple_login. We have to put the extra “cat” in the command to echo 
Commands to the shell we will spawn, otherwise an EOF is sent and the shell closes 
Immediately before we can actually execute any programs.  



Shellcode 

•  So that’s nice, but it isn’t quite “Arbitrary code 
execution” since we are relying on 
simple_login to contain this root shell 
spawning code prepackaged (not realistic). 

•  How do we insert our own arbitrary code into 
the program to execute? 

  



Shellcode 2 

•  Among other places, we can actually just insert 
this code into the program through a typical input 
medium. In other words, when simple_login 
attempts to read in our password guess, we can 
feed it in an executable program. 

•  Thus the password[64] buffer will end up 
containing a small standalone program that we 
will later execute by redirecting the overwritten 
stored return address to the address of buffer! 



Properties of shellcode 

•  Aims to be small since it often has to fit in 
small input buffers.  

•  Position independent (can’t make any 
assumptions about program state when it 
begins executing) 

•  Should contain no null characters (many 
standard string copying library calls terminate 
upon seeing a null character) 

•  Must be self contained in an executable section 
(shouldn’t reference data in data sections, etc). 



Example shellcode payloads 

1)  Execute a shell 
2)  Add an Administrator user 
3)  Download and install a rootkit 
4)  Connect back to attacker controlled server 

and wait for commands 
5)  Etc… 



Linux Assembly Programming 

•  Easier than Windows! 
•  Simple to use and powerful system call 

interface 
•  Look up the number corresponding to the 

system call in /usr/include/asm-i386/unistd.h 
•  Place system call number in eax, and 

arguments in ebx,ecx,edx… etc in the order 
they appear in the corresponding man page 

•  Execute int 0x80 to alert the kernel you want 
to perform a system call.  



Hello, World! 



Can we use it as shellcode? 

What are the problems here? 



Can we use it as shellcode? 

1)  Null bytes are bad. Basically every standard library function is 
going to treat those null characters as terminators and end up 
truncating our program. 

2)  Not position independent. That 0x80490a4 address referenced is 
going to be meaningless when we inject this into another program. 



The extended (eax, ebx, ecx…) x86 registers are 32 bit. So when we attempt to 
Move a less than 32 bit value to one of them (mov eax, 0x4), the compiler pads the 
Value with 0. If we instead move the immediate value to the appropriately sized  
Version of the registers, the null padding will not be added. 
 
Recall: 
Eax = 32 bits, ax = 16 bits, al = 8 bits 

We still have 1 null byte left. What if we actually need to use a null byte in our code 
Somewhere like when we are trying to exit with a status code of 0? What about that 
pesky string address we are still referencing? Suggestions? 



Attempting to achieve position independence and our reliance on that fixed string address. 

- We can create a null byte to use by performing xor ebx, ebx 
-  Store the string we want to print/reference on the stack, and then just pass esp 
   to the system call! 
But wait, the code still won’t work as shellcode.  
Challenge: What did Corey do wrong?? 



Corey burned a good hour trying to figure this mystery out… 

Standard library functions also truncate on the new line byte (0x0a)! Hence 0x0a 
Is bad like null bytes! 



The easy way out…. 

Basically I just changed the newline character to another exclamation point to get rid of 
The libc copy problem, and to put emphasis on how hard we are owning these programs. 
If you are jaded you might just think I’m cheating here… 



New goal! 

•  Previously we forced the simple login program 
to execute go_shell(). By overwriting the saved 
return address and thereby setting the eip to 
go_shell()’s start. 

•  But we want to use our new toy, our snazzy 
shellcode.  

•  How do we get our shellcode into the program 
so we can overflow the return address again 
and set eip to execute our shellcode? 



Game Plan 

•  Instead of spraying a bunch of junk into the 
password buffer to get to the saved return 
address, we will first input our shellcode’s 
opcodes. (This is perfectly acceptable program 
input). 

•  Then, we will change the eip of the program to 
point to the password buffer, where are 
shellcode’s opcode is stored!  



For ease I created a hello_shell.pl script which just prints out our shellcode’s 
opcodes, making it easier to inject into the password[64] buffer in the simple 
login program. 



Remember, when overflowing the password[64] buffer of the simple_login program 
To overwrite the eip, we first filled password with 64 bytes of junk (0x41), 4 additional 
Bytes of junk to overwrite the saved frame pointer, and then 4 bytes representing the  
Address with which we were going to overwrite the saved return address with.  

<AAAAAA….  64 times><AAAA><0x080482aa> 
Old payload… 



New Payload 
Heres what we are going for… 

<NOP.NOP.NOP><SHELLCODE OPS><AAAA><Address of password buffer> 

•  <NOP.NOP.NOP><SHELLCODE OPS> still needs 
to be a total of 64 bytes combined.  
•  Recall, NOPS are just do nothing instructions, so 
when eip points to the password buffer, it will just 
‘do nothing’ until it starts hitting the shellcode op 
codes. 
• sizeof<NOPS> = 64 – sizeof<SHELLCODE OPS> 



•  First we build the <NOPS><SHELLCODE> 
portion of the shellcode 

•  Still need the <AAAA><Address of Password 
Buffer> part of the payload 

•  We need to determine the address of the password 
buffer 



•  We set a break point after the gets() call that 
reads in the buffer so we can try to find out 
shellcode on the stack 

•  Looks like 0xbffff594 lies in the middle of our 
NOPS, so the password buffer must be there. 
We will make this our target eip. 



Final Payload Construction 

•  We now have the 
<NOPS><Shellcode><AAAA><address of 
password buffer> payload complete 

•  Let’s use it! 



•  We just forced simple_login to execute arbitrary 
code that we injected into it!!! 

•  In reality, an attacker would want to do something 
more useful than just print a message. 

•  What would you do if you wanted to execute 
arbitrary code but the architecture forbid you from 
executing the password buffer as if it were code? 



Something more useful! 



Your Quest 

•  Turn the previous starter program which 
executes a shell into real shellcode 

•  Some issues are obvious, there are null bytes, a 
reference to the data section, others? 

•  I hope you remember your Intro to x86 
material. In case your hazy, I’ll be coming 
around the class to help. 



Test Harness 

Shellcode_harness tries to execute whatever opcodes 
you pass into its command line argument as shellcode. 
This way you will know if your shellcode is working or 
not.  



My Solution 



It’s alive! 



Discussion 

•  What issues did you run into? 
•  How did you solve them? 



Your Quest: It’s never over 

• Now force this program to execute a shell 
with your new shellcode. 
•  Where will you point eip at? You have a 
couple choices 
•  You will run into mysterious issues based 
on your choice…. 



Debriefing 

•  Where did you choose to point eip at? 
•  What issues did you run into? 
•  How did you solve them? 



Da Heap!!!! 



Heap vs Stack 

•  We use the stack to store local variables.  
•  Stack variables have a predetermined size 
•  When we need to dynamically allocate 

memory, we use the heap (like malloc() or the 
new operator). 

•  This generally occurs when how much 
memory we need for storage is dependent on 
some user input 



Heap vs Stack 2 

•  Systems/programming languages usually 
provide their own (sometimes multiple) 
dynamic memory allocators. 

•  Thus the way memory is dynamically 
allocated/deallocated to a process varies 
considerably system to system. 

•  This is a good deal different than stack 
variables/operations whose essence is coupled 
with the architecture. 



System Break 

•  The “system break” is the limit of a processes 
memory. 

•  Unix provides the brk() and sbrk() system calls 
which extend (or reduce) the limits of a 
processes memory. 

•  Most modern dynamic memory allocators rely 
heavily upon brk()/sbrk(). 



Here we see malloc() using the brk() system call to extend the process’s memory 



But why not…. 

•  But why do we need these fancy dynamic 
memory allocators? 

•  Why not just use the brk() system call directly 
every time we need more memory? 



Because… 

•  That would be horribly inefficient.  
•  We would never reclaim unused memory so 

processes would hog much more memory than 
they require to operate 

•  Sbrk()/brk() are relatively slow operations so 
we want to minimize the number of times we 
have to call it. 



How the professionals do it 



General design ideas 

•  Most heap allocators are front ends for brk()/
sbrk() 

•  These allocators break up memory claimed via 
brk() into “chunks” of common sizes 
(256/512/1028… etc) 

•  Keep track of which chunks are free (no longer 
needed by program) and which are still being 
used. 



General design ideas 2 

•  Dish out free chunks to the program when 
needed instead of having to call brk() again 

•  Coalesce contiguous free chunks into one 
larger chunk in order to decrease heap 
fragmentation 

•  Use crazy linked list voodoo to implement all 
that 

•  Store meta information about chunks in 
unused/free parts of the chunk to minimize 
total process memory usage. 



Case Study: Corey’s Crappy 
Allocator .00001 

•  Mimic’s general implementation of Unix 
dynamic memory allocator (malloc) 

•  Fast allocate 
•  Slow deallocate 
•  Does not coalesce free contiguous chunks 
•  Does keep track of free chunks to dish out to 

user  



Corey’s Allocator Overview 
•  Maintains at all times a doubly linked list of free 

chunks we have allocated through brk() 
•  Meta information about free chunks (if its free, how big 

it is, etc) is stored in the memory just before the chunk.  
•  Every time Alloc(size) is called, walk linked list of free 

chunks to see if a suitable already allocated chunk is 
available to return to the user. If not, call sbrk() to 
extend the heap to satisfy the users memory 
requirements. 

•  Dealloc(chunk) marks chunk as available and then 
rebuilds our linked list of free chunks to include this 
just freed chunk.  



Nitty Gritty: chunk meta information 

Available 
Size 

Next_free_chunk 
Prev_free_chunk 

User/program data goes in here 

This is the 
address actually 
returned to the 

application 
Control_block_t 



Alloc Algorithm 

•  Traverse linked list of free chunks previously 
allocated with brk(). 

•  If one is found that is a suitable size, take it off 
the list of free chunks and return it to the user 

•  If no suitable free chunk is found, expand the 
heap via the brk() system call by the amount of 
memory required by the user. Return a pointer 
to this expanded region of the heap to the user. 







Unlink_chunk(void *chunk) is what we use to 
remove a chunk from the linked list of free chunks 
once we decide we want to return it to the user for 
use.  



Dealloc algorithm 

•  Much simpler! (sort of) 
•  Mark the dealloc()’d chunk as available/free. 
•  Reconstruct the linked list of free chunks to 

include the recently dealloc()’d chunk 
(somewhat complicated and slow). 





Defrag_heap() algorithm 

•  Start at the beginning of the heap.  
•  Clear out the linked list of free chunks (we 

rebuild it from scratch) 
•  Traverse every memory chunk we have 

allocated via calls to brk() 
•  Read each chunk’s control_block information.  
•  If the chunk is available, as indicated by the 

control_block information, add it to the linked 
list of free chunks. 



Lets see it in action! 

Here we see that alloc() is successfully reclaiming chunks 
previously allocated. Thus the allocator is avoiding calling brk
() more than it has to! 



How contrived is this example? 
•  Not at all. I modeled this after Doug Lea’s malloc() 

basic design. Doug Lea Malloc is the basis for more 
allocator implementations running on modern versions 
of Unix/Linux.  

•  dlmalloc also stores similar chunk meta information in 
the front of the chunk. 

•  dlmalloc also maintains linked lists of free chunks to 
speed up allocation. These are however, much more 
complicated, and much more efficient 

•  In general you will see similar implementation themes 
in most dynamic memory allocator implementations. 
This is a good one to start with understanding since it 
will give you an idea of the basics of what is involved 
here. 



Prove it! 

http://g.oswego.edu/dl/html/malloc.html 
Look at the website wise guy. Actually, I highly recommend this 
if you plan on continuing in improving your exploit voodoo. 



Wow that was boring. 

Why the hell did we bother learning all of that 
hideously boring stuff? I don’t care how memory 
allocators are implemented… seriously… 



Heap overflows are the new black 



Actually… Heap overflows are: 
•  Harder to find than stack overflows 
•  Harder to exploit than stack overflows 
•  Showing up in a lot of client side exploits these 

days (browsers, adobe reader, etc…) 
•  Not going away any time soon. Heap overflows 

are an ever changing landscape since they are 
allocator implementation dependent, and the 
implementation is a moving target. 

•  More elite than stack overflows. You’ll get way 
more street cred if you publish a heap overflow 
instead of a stack overflow. Trust me on this 
one… 



Key Point 

•  We studied all of that tedious allocator 
implementation stuff because before you 
exploit a heap overflow, you must understand 
deeply the inner workings of the allocator.  

•  Again: Understanding a memory allocator is a 
prerequisite to exploiting it. 

•  You don’t want to be one of those lame people 
that just copies/uses a technique pioneered by 
someone else without even understanding it. 



Corollary Lab 

•  In many types of exploitation scenarios, you 
will end up in a situation where you can 
overwrite 4 arbitrary bytes of memory. 

•  Given this capability, how do you gain 
arbitrary execution of code in a vulnerable 
program? 

•  What 4 arbitrary bytes will you overwrite, and 
with what value? Ideas? 

•  You already know about one suitable target… 



Arbwrite.c 



Global Offset Table 
•  The Global Offset Table is the analog to the 

Import Address Table in ELF binaries. 
•  When you compile a program that depends on 

shared library functions (like printf) the compiler 
doesn’t know at compile time what address to call 
since the shared library function is only added to 
the process at run time. 

•  Instead the compiler calls a placeholder value in 
the global offset table. 

•  This placeholder value is filled in at run time by 
the linker. 



GOT Investigation 

•  In this example 0x0804967c stores the location where the printf function is 
placed by the run time linker. In other words, when we call printf we are actually 
doing call *0x0804967c 
•  If we overwrite the value stored at 0x0804967c (the address of printf) with the 
address of shellcode instead. The next time printf is called, our shellcode will 
instead be executed. 



DTORS 

•  The destructors section (DTORS) is added to 
GCC compiled binaries. 

•  Whenever a GCC compiled program exits, it 
calls any functions registered in the DTORS 
section of the binary. 



Other Options 
•  You still have good ol’ trusty return address as a target. 
•  There are lots of other options for targets you might 

exploit in order to gain control of execution.  
•  Feel free to use google to explore the ELF format to try 

to find other valid targets, bonus points if you do. Look 
here for starters: 

http://www.skyfree.org/linux/references/ELF_Format.pdf 
 
•  Take some time to try to exploit arbwrite using one of 

these options we’ve discussed. 



GOT Ownage 

•  Who chose this method? 
•  What problems did you run into? 
•  How did you get around them? 



DTORS Ownage 

•  Who chose this method? 
•  What problems did you run into? 
•  How did you get around them? 



Exploiting the Heap 

•  We know when the stack can be exploited. 
Specifically when we can write too much 
arbitrary data into a stack buffer, and thus 
overwrite the return address. 

•  What circumstances result in a heap allocator 
being vulnerable? 

•  Once a vulnerability in the heap has been 
identified, how is it exploited to gain arbitrary 
code execution? 



Important Exploitation Principle 

•  Exploitable vulnerability present => crash bug 
in application present 

•  Crash bug in application => Don’t mean a 
thing 

•  In other words, if we can exploit an 
application, we can make it crash. If we can 
make an application crash, we still might not 
be able to exploit it. 



Exploitation Principle 2 

•  It’s your old friend null pointer dereference. 
•  Not exploitable for the purpose of this class 
•  Still causes a crash though 



Exploitation Principle 3 
•  Your old friend basic_vuln.c, which you know for a fact 

is vulnerable. 
•  We are of course able to just crash it when we 

inadvertently set the return address to 0x41414141 
which isn’t a valid address, resulting in the crash. 



First step 

•  Before we can exploit the heap, let’s try to 
crash it! 

Hmm… This worked with stack overflows. I told you heap overflows would be harder… 



Perhaps if we make multiple allocations in the hope the 
allocator will stumble over some corrupted meta data… 
Getting warmer… but still no cigar… 



Your Quest Continued 

•  Make Corey’s Crappy Allocator Crash, thereby 
potentially exposing a vulnerable situation. 

•  Use various combinations of reading in user 
input, alloc()’s and dealloc()’s. 

•  Hint: try to get alloc() or dealloc() to process 
corrupted chunk meta data. 



•  What combination of alloc()’s dealloc()’s were 
you able to come up with to cause a crash? 

•  What fundamental differences from stack 
overflows did you notice? 

•  Where in the allocator code is the crash 
occurring, and why? 

•  How might this be exploitable? 



My solution 



Heap Analysis at Crash Time 

•  Two chunks of size 128 are claimed from the 
brk() system call for buf1 and buf2. 

•  Chunk2 becomes available with a call to 
dealloc(buf2). 

•  The strcpy into buf1/chunk1 overflows into the 
available chunk2 corrupting its meta data. 

•  When alloc() requests another chunk, it 
processes the existing chunk’s meta data, and 
blows up on chunk2’s corrupted meta data. 

 



The corrupted meta data 

We can see two heap enumerations in green text. The first 
enumeration is of the uncorrupted heap, the second is after the 
vulnerable strcpy. 



Corrupted control_block_t 

•  After the strcpy: 
•  Available = 0x41414141 
•  Size = 0x41414141 
•  Next_free_chunk = 0x41414141 
•  Prev_free_chunk = 0x41414141 



Crash Causation 

•  We know the crash happens somewhere in the 
alloc() code based on our code. 

•  The debugger gives us the exact line in the 
unlink_chunk() code. 



C Language Corollary 

•  Let A be a pointer to a structure 
•  Let B be a member of A’s structure 
•  A->B is shorthand for (*A).B 
•  In other words, dereference the pointer A to get 

to the relevant structure and then reference the 
B element of the structure. 



•  In the case of our crash situation, cb points to 
chunk2 (the chunk with the corrupted meta 
data). 

•  In other words, the above line is really doing: 
Cb->(*0x41414141).next_free_chunk = cb->

(0x41414141). 
•   In plain english: The line of code is trying to 

set the value at 0x41414141 to 0x41414141. 
•  Notice these are values we control. This means 

with clever construction, we can cause an 
arbitrary 4 byte overwrite. This is a scenario 
you know how to exploit. 



Heap Exploit: How to 

•  Set chunk2’s prev_free_chunk-
>next_free_chunk equal to an address where 
we can overwrite in order to gain execution 
(DTORS/GOT/Return Address). 

•   Set chunk2’s next_free_chunk equal to the 
value we want to write the above address with. 

•  For example: prev_free_chunk-
>next_free_chunk = DTORS; next_free_chunk 
= shellcode address 



C Language Corollary 2 

•  (*0x41414141).next_free_chunk really means 
*(0x41414141 + 8) since next_free_chunk is 8 
bytes into the control_block_t structure (int 
available and int size are both 4 bytes each).  



Corollary 2 Side Effect 

•  For example: prev_free_chunk-
>next_free_chunk = DTORS; next_free_chunk 
= shellcode address. turns into: 

•  Prev_free_chunk = (DTORS-8); 
•  Next_free_chunk = shellcode address. 



Heap Exploit Payload Construction 

Step 1: fill chunk1 (128 bytes) with a nop sled and then our 
shellcode. We will eventually redirect execution to chunk1 



Payload Construction 2 

•  After we will chunk1 up with 128 bytes of our nop sled/
shellcode, we will start overwriting chunk2’s control block. 

•  We need to first fill available and size with suitable values 
(available != 0) (size >= 128) 



•  Next we find the address where our nop sled 
and shellcode reside on the stack after strcpy. 
In this case 0x804a010 



•  We choose dtors as our target to finish our payload. 
This payload will set chunk2’s control_block as 
follows 

•  Available = size = 0x11111111 
•  Next_free_chunk = NOPS/shellcode = 0x804a010 
•  Prev_free_chunk = dtors-8 = 0x8049b80  



•  You didn’t really think that would work on the 
first try did you? 

•  Why did we crash? What is going wrong? 
•  Investigate and tell me! 



•  The eip is within our payload, suggesting we 
did gain control of execution 

•  But what’s with the junk in the middle of our 
shellcode? 



•  This is the line of code we are exploiting to 
perform our arbitrary overwrite 

•  The line right after that one causes bytes in our 
shellcode to get mangled, shazbot! 



Back to work! 

•  Take some time to finish the heap exploit 
•  You are almost there, you just have to figure 

out how to deal with the mangled shellcode 
bytes. 

•  Hint: You can try to correct them, or just try to 
‘skip’ over them.  



•  Heres my solution, I just encoded a relative 
jump instruction to skip past the bad bytes 



Shizzam! 



Recap 
•  Although we were just exploiting a toy 

allocator, it models very closely the 
implementation and subsequent vulnerabilities 
of many generic heap allocators. 

•  Many heap allocators choose to store chunk 
meta data inline, allowing chunk meta data to 
be corrupted in an overflow. 

•  I like to think about many heap exploitation 
scenarios as exploiting linked lists. 



Recap 2 

•  The most important thing to remember about 
heap overflows: To exploit a heap overflow, 
you must first understand the implementation 
of the underlying allocator. 

•  Heap overflows are a moving target since the 
implementation is continually changing.  

•  The attacker must often actively manipulate 
the state of the heap before they can 
successfully exploit a vulnerability. 



Vulnerable Scenarios 

•  The class of vulnerabilities we have studied thus 
far are referred to as overflows (buffer overflows, 
stack overflows, heap overflows…). 

•  The key to this particular class of vulnerabilities is 
being able to write past the bounds of a buffer 
with user control data, potentially allowing us to 
corrupt important program meta data. 

•  This remains the most common form of 
vulnerable scenario seen in software today. 



Other Vulnerable Scenarios 

•  While overflows remain the ‘bread and butter’ 
of the exploits community, its time to study 
other flaws attackers can exploit to gain 
execution of arbitrary code. 

•  Many of these scenarios will overlap with 
overflows in that they result in trigging an 
overflow, but they are still important to 
understand from an isolated standpoint so you 
can recognize them in code you are analyzing.  



Format Strings 

•  Printf(user_controlled_data) 
•  Okay, what’s the big deal? 
•  The big deal is the attacker can actually leverage 

this to do a number of bad things: crash, 
information leakage, overwrite 4 arbitrary bytes 
of memory etc… 



I don’t believe you! 

•  When printf receives a control character ‘%x, %s, 
%d, etc…” it pops the corresponding argument off 
the stack. 

•  For instance, if we do printf(“%s”,blah_string), the 
printf code pops off the stack the address of 
blah_string.  

•  If we fail to provide printf with any real arguments 
to correspond to its control characters, it still pops 
values off the stack and expects them to be 
legitimate arguments to the control characters.  



Not interesting at all… 

•  We can see in this case printf(“%x %x…”) that 
we are just printing values off of the stack. 

•  Technically this is an “information leakage” 
bug and if important values were stored on the 
stack (passwords, keys…) we could discover 
them. 

•  Wow, I’m impressed, really…. 



•  What we really want is arbitrary code execution, 
information leakage is for the weak. 

•  Remember that old principle: exploitation 
possible => crash possible ? 

•  Try to make the program crash! 
•  Hint: Using the right control character is key, look 

in the “conversion specifier” section of man 3 
printf. 



It’s a feature! 

•  The strange %n control character pops an 
argument off the stack, and then attempts to write 
the number of bytes printed to that argument. 

•  Why does this feature exist? I have no idea, has 
anyone used this before for a legitimate purpose? 



•  So what’s happening here is that the %n control 
character is popping values off the stack and 
attempting to write to them.  

•  Eventually it pops a non-writeable address off the 
stack and the attempt to write to causes a crash. 



Exploiting Format Strings 

•  Because the attacker can control the stack with 
%x’s and other control characters that pop values 
off the stack, he can eventually match up %n 
control characters with stack values he controls. 

•  The attacker points these stack values at an 
address he wants to overwrite (DTORS/GOT…) 

•  The attacker prints enough junk data before the 
%n control character in order to set the target 
address to be overwritten to the desired value. 



The threat is real 
•  In conclusion, format strings can be leveraged to 

cause an arbitrary 4 byte memory overwrite, 
which you know can lead to execution of arbitrary 
code. 

•  This class of vulnerabilities effects not only printf
(), but the whole class of printf functions: snprintf, 
vfprintf, vprintf, sprintf, etc… 

•  Format Strings are exceptionally powerful 
because they are much easier to exploit in 
hardened environments where traditional 
overflows will be stopped/mitigated. 



R.I.P Format Strings 

•  We aren’t going to the pain of exploiting our own example 
for a reason. 

•  Format Strings were all the rage in the early 21st century, but 
are rarely seen anymore these days. 

•  For one, Format Strings were much easier to locate than 
their overflow counterparts, causing them to be rapidly 
hunted to extinction. 

•  Second, recent patches to the printf() families code has 
made exploitation of these vulnerabilities dramatically 
harder, if not impossible. 

•  Still, if you see a format string vulnerability it could still be 
exploited depending on the architecture its running on, and 
should be dealt with accordingly. 

http://phrack.org/issues.html?issue=67&id=9#article – A Eulogy For Format Strings 



What’s wrong here? 

 
•  Allowing the user to directly specify the size of a buffer 

is often problematic. 
 



Here’s Why 

•  Computer integers don’t continue to infinity, 
they overflow to 0 

•  Integer overflows are often the root cause of 
vulnerabilities in “real” software. 



•  If the attacker makes user_input_len the 
maximum allowable size for an unsigned int, 
then buf will be allocated with 0 space, but the 
memcpy will still copy a lot of bytes, resulting 
in an overflow 



Trickier 

•  Hey, we are doing overflow detection, what’s 
the problem here? 



•  Size_t is an unsigned data type. When signed 
values are promoted to unsigned values, 
unexpected things can happen. 

•  In our previous example, if user_len is -1, it 
will pass the overflow test since -1 < 128. 

•  However, when -1 is passed to memcpy it is 
implicitly converted to an unsigned value, 
resulting in a value of 4294967295! 



Signed rules 
•  Signedness issues can be confusing but are 

important to understand if you are looking for 
software vulnerabilities. 

•  If you compare integers of different types, they 
are compared as the basic integer type, which is 
signed. 

•  However, if either integer is bigger than the basic 
signed integer type (unsigned integer for 
instance), then both are converted to be of the 
same larger type. 



Signed Rules Examples 

•  integer < unsigned integer, is an unsigned 
comparison 

•  integer < 16,  is a signed comparison. 
•  unsigned short < short, is a signed comparison. 
•  integer < sizeof(buffer), is an unsigned 

comparison. 



So close! 

•  Here we see an example off an off-by-one 
vulnerability. 

•  Libc is inconsistent with whether or not it will 
write a null byte past the end of a buffer. 

•  In this case, if argv[1] is 128 bytes long, strncat 
will fill up buf, and then write a null byte past the 
bounds of buf! 



Big Whoop 

•  At first you may wonder why writing a single 
byte past a buffer matters. After all, it’s not 
even getting close to overwriting the return 
address 

•  But as you can see, this single byte causes a 
program crash, which means exploitation may 
be possible. Getting nervous yet? 



Let me break it down for ya 
•  It turns out that even overwriting just one byte past a 

buffer often leads to an exploitable scenario 
•  The basic idea is to corrupt the saved frame pointer on 

the stack (saved ebp) with the one byte overwrite. 
•  Corrupting the saved frame pointer allows the attacker 

to eventually corrupt the stack pointer. 
•  Once the attacker controls the stack pointer, he can 

cause the next return instruction to jump to his 
shellcode because the return instruction pops an 
instruction pointer off the stack (which we now 
control).  

•  Let’s look at an easier example to work through 



Frame pointer overwrite 

•  There is a one byte overflow in func().  
•  We will exploit this example as opposed to our previous 

one because it is easier. This is because the overflowed 
byte is arbitrary, instead of 0x00. 

•  However, the previous strncat example may still be 
vulnerable depending on the state of the stack. 



•  At func+94 we have the equivalent of <mov esp, 
ebp; pop corrupted_ebp> 

•  At main+26 we have the equivalent of <mov esp, 
corrupted_ebp; pop ebp> 

•  At main+27 we have the equivalent of <pop eip>. 
Note the pop instruction is based off the now 
corrupted esp. 



•  If we can force the saved frame pointer (ebp) to point to 
attacker controlled territory, then main+26 will result in 
the stack pointer (esp) pointing at attacker controlled 
territory. 

•  Then, main+27 will result in an attacker controlled value 
being popped into eip. Game over. 

•  However, this all hinges on us being able to point the 
saved ebp at attacker controlled territory while only being 
able to manipulate its least significant byte! 

Buf[255] 
Buf[255] 

. 

. 

. 
Buf[1] 
Buf[0] 

Saved EBP[4] 



•  We can force the saved frame pointer to equal 
0xbffff4XX. XX is our choice. 

•  Booyah! We can force the saved frame pointer 
into attacker controlled territory. This means we 
can gain ultimately pop whatever value we want 
into eip when the main function exits! 



•  I have the powwwwerrrrrrrr! 
•  We just redirected the execution of the program to 

an eip of our choice! 
•  Next we obviously want to use our poowwweerrrr 

over the eip to execute shellcode 



Do you have the powwwweerrr? 

•  The key to exploiting this scenario is to have esp 
point to <address of shellcode> at main+27 

•  <address of shellcode> is a pointer that contains 
the value of the start of our shellcode. 

•  Go forth my minions, and exploit! 

Buf[255] 
Buf[254] 

. 

. 

. 
<Address of Shellcode> 

shellcode 
shellcode 
shellcode 

Buf[1] 
Buf[0] 

ESP 



Debrief 

•  Were you able to cause arbitrary code 
execution? 

•  What difficulties did you encounter? 
•  How did you get around them? 



My solution 

•  Payload look like <NOPS><shellcode><AAAA><A> 
•  <NOPS><shellcode> total 252 bytes total 
•  This leaves 4 bytes of AAAA (to be changed later) that will 

eventually be the address of our shellcode (what we will point 
esp at 

•  The last A is the byte we will corrupt the least significant byte 
of the frame pointer with 



•  0xbffff42c is an address in our NOPSled. 
•  0xbffff498 is the address which will contain the 

pointer to our shellcode location(0xbffff42c).  
•  0xbffff498 fits our mandatory 0xbffff4XX format so 

we know we can overwrite the saved ebp to point to 
this address. 



•  I overwrite the “AAAA” filler bytes with the pointer to 
our shellcode <0xbfffff42c> 

•  The last byte represents the last byte of the address of 
our pointer (sort of) 0xbffff498 

•  Notice that I write “94” instead of “98”. This is because 
the pop ebp portion of the ‘leave’ instruction will 
increment esp by 4.  

•  This ensures esp will point at the pointer to our 
shellcode when the main function attempts to return. 



Bingo 

•  You may have noticed your exploit failed when you tried to run 
it out of the debugger. That’s because the state of the stack 
varies slightly when you ran it outside of the debugger, 
compared to when you used the debugger to find the addresses 
you needed. 

•  You might have also stumbled over the need to subtract 4 to the 
frame pointer corruption byte in order to compensate for the 
pop ebp portion of the leave instruction instruction. 

•  Don’t feel bad if you didn’t get it, we are getting pretty deep 
down the rabbit hole. 

•  The main point here is to emphasize that even the slightest bug 
in your program can provide an avenue for an attacker to gain 
arbitrary code execution. 



Off-by-one corollary 

•  In this case, if buf3 is 64 bytes long, strncpy will not null terminate the 
string. 

•  This will cause buf1 to be overflowed during the strcpy(buf1,buf3) which 
will in effect strcpy(buf1,buf2 + buf3) leading to an exploitable scenario. 

•  Always make sure your strings are null terminated, some libc functions 
don’t null terminate under certain conditions. 

•  Understanding the border cases of libc functions better than the attacker/
developer will allow you to better defend/attacker code than him. 



Real men ignore warnings! 

•  How often have you totally disregarded petty 
compiler warning errors like the ones above? 

•  Perhaps a little trip down the rabbit hole will 
make you think twice…. 



•  Compiler documentation usually tells us that 
uninitialized variables are ‘random.’ 

•  Does that output look random to you? 
•  In fact, it’s not random at all, its just data off 

the stack. 



•  Stack frames are reused and old data is not cleared out/
sanitized.  

•  Uninitialized stack variables just reuse whatever data is 
currently on the stack. 

•  This reused data on the stack is not random, and may in 
fact be attacker controlled data. 

•  Uninitialized variables can lead to exploitable scenarios 



•  The mesg variable in the log_error function in uninitialized 
but it used in a later sprintf call. 

•  If the attacker can cause that mesg pointer to contain an 
address of an attacker controlled array, then he can cause a 
buffer overflow during the sprintf. 

•  See if you can force the overflow… (Just crash, don’t fully 
exploit) 



•  We filled up as much of the stack as we could with the 
address of the password buffer (attacker controlled), to 
increase our chances mesg would be initialized with that 
value 

•  We filled the password buffer up with junk to overflow the 
log_error buffer with during the sprintf. 

•  Ultimately, this caused the log_error to be overwritten with 
the entire contents of the password[] buffer, including 
overwriting a saved return address. You know how to 
exploit this from there. 



Other heap oddities 
•  To round up our summary of various exploitable 

scenarios, we will end with some heap exploitation 
corner cases. 

•  The first case is double free vulnerabilities, where free 
is called twice on the same chunk of memory, leading 
to a possible exploitable scenario. 

•  The second case is use after free, where a chunk of 
memory is continued to be used after it is free()’d. This 
sometimes leads to exploitable situations. 

•  Both of these exploitation scenarios are highly 
dependent on the particular heap allocator 
implementation. Again, I stress that to exploit heap 
vulnerabilities you must know the details of its 
implementation thoroughly.  



•  Remember our old rule of thumb, if it crashes, it might be 
exploitable. 

•  Essentially in this scenario we are forcing the allocator to 
process corrupted (unexpected) chunk meta data.  

•  You often see this scenario arise in global pointers which 
are referenced/handled by many different functions across 
a large body of code. It’s easy for developers to lose track 
of who all is doing what to the pointer in question.  



Recap 

•  We saw a lot of different types of 
vulnerabilities 

•  Off-by-one, signed comparison errors, format 
strings, uninitialized variable usage, integer 
overflow, double frees.  

•  Many are “subclasses” of generic buffer 
overflows, but are important to understand and 
recognize because they are prevalent in many 
modern exploits.  

 



Critical Point 

•  Even the most subtle bug in a program can 
lead to arbitrary code execution. 



Turning Point 

•  Up until now we have learned about why 
certain situations are exploitable, and how to 
exploit them. 

•  The vulnerable situations we studied were 
blatant and constructed. 

•  In the “real world” vulnerabilities are generally 
much more subtle and harder to spot. 

•  Let’s work on trying to spot some real 
vulnerabilities in real software… 



Warm up 

•  This is from the University of Washington 
IMAP server. 

•  The vulnerability should be straightforward, 
but why would exploitation not be? 

•  How should you correct the vulnerability? 



Warm up recap 

•  This is a vanilla strcpy stack overflow. 
•  It can be fixed via use strncpy. 
•  Strcpy stack overflows are largely extinct these days 

since they are easy to find. I had to go back to 1998 for 
this one. 

•  Still, you will still find such blatant vulnerabilities in 
custom/non-public code that hasn’t seen a lot of 
analysis. 



•  This one is from the OpenBSD ftp daemon. 



•  If the last character is a quote, the ++I instruction 
will increment I past the end of the npath buffer. 

•  The last instruction then writes a null byte past the 
end of npath, resulting in a 1 byte overflow. 



•  OpenSSH example 



•  If nresp * sizeof(*char) is greater than 
0xffffffff, response will be unexpectedly small 
and the for loop will copy a huge amount of 
data into it. 



Return of the IMAP 

•  Another vulnerability from Washington 
University IMAP Server 

•  What’s the vulnerability, how would you fix it? 



Return of the IMAP Recap 

•  If the ‘t’ string only contains one quote, the for loop 
will continue to copy data into arg until oblivion. 

•  Modern buffer overflow vulnerabilities often occur in 
manual string parsing loops like the one above. 



ProFTP is the secure ftpd right? 

•  What’s the vulnerability here? 
•  How would you fix it? 



ProFTP vuln recap 

•  Attack can arbitrarily specify the reqarnlen integer, and thus read in 
an arbitrary number of bytes to the reqaction buffer. 

•  Allowing the user to arbitrarily specify the value of integers later 
used for operations in the program is often problematic and a source 
of vulnerabilities.  



•  This one is from OzHTTPd.  
•  You know the drill 



•  Possible overflow in the vsprintf 
•  Definite format string vulnerability in the fprintf. 
•  Error logging in daemons have historically been a common 

source of format string’s and other vulnerabilities.  



Apache Vulnerability 

•  The tell tale signs are there… 



Apache Vulnerability 

•  If the two if conditions are true, we will have an 
off byte one vulnerability in the last memcpy 



•  This one is from the linux kernel 
•  Hint: 2 examples of the same vulnerability here 



•  This function attempts to do some integer overflow detection on line 7, 
however integer overflows exist in the vmalloc()’s in line 14 and line 18. 

•  If maxnum is large enough, we will have an integer overflow due to 
multiplication and the buffer’s returned from vmalloc will be smaller than 
expected. 



•  This example is from the freebsd kernel 
•  Copyin/copyout functions are for copying in/out data 

between user space and kernel space. 
 



•  If len is negative on line 21, then MIN will always return it over 
sa->sa_len. 

•  The copyout on line 22 will then convert the negative integer to 
a huge positive value, this results in a huge amount of kernel 
memory being disclosed to userspace (information disclosure 
vulnerability). 

 
 



•  You will have to make some assumptions about what 
the elproc function pointer is doing. 

•  Based on your assumptions, under what circumstances 
is the function vulnerable? 



•  If sizep and elsize are sufficently large, nodesize will overflow. This 
will result in an unexpectedly small value sent to the allocation 
request at line 23. 

•  Assuming elproc is some sort of memory copy function, there will 
be an overflow at line 27. 



•  Another example from proftpd 



•  If handle_iac is true, and we hit the TELNET_IAC case and then the default case, 
buflen will incorrectly be decremented twice 

•  If buflen == 1 when this happens, buflen will be decremented to -1, and the while 
loop will continue to copy an unexpected amount of data. 



•  This example is from the Snort IDS 
•  The code is reassembling fragmented packets into 

a full packet. 
•  Fear not, for they are doing bounds checking! 



•  Rpc points to a destination buffer, index points to a source buffer 
•  Total_len represents the total amount of data copied into the destination 

buffer 
•  The bounds check is insufficient because it only takes into account the 

size of the current fragment, not the total size of all the fragments. 



Not your grandma’s 
vulnerabilities 

•  Modern vulnerabilities are not the strcpy
(buffer,user_data) you might have expected. This 
trivial class of vulnerabilities is largely extinct. 

•  Instead, vulnerabilities today usually take the 
form of off-by-one, integer overflow, signedness 
error, or incorrect bounds calculations as you saw 
in many of our examples. 

 



Finding Vulnerabilities 

•  We have spent a lot of time learning how to 
exploit vulnerabilities, and studying the 
various classes of vulnerabilities often present 
in software. 

•  How should one go about trying to find 
vulnerabilities in software? 



•  The methodology you use to try to root out 
vulnerabilities in an application are largely 
determined by properties of that application. 

•  If the target is closed source, you will probably 
be stuck fuzzing, analyzing crashes and reverse 
engineering. 

•  If the target is open source, manual source 
code inspection is a viable option (albeit 
tedious). 

Target Dependent 



Fuzzing 

•  Remember our important principle? If there is 
a vulnerability, then there is a crash. 

•  Fuzzing is essentially the process of sending 
garbage data to an application in the attempt to 
ferret out a crash. 

•  For example, a fuzzing application might 
enumerate all of a programs command line 
arguments and attempt to pass enormous 
strings of junk data to each of the arguments. 



•  Sharefuzz is a crude fuzzer that works as a shared 
library. 

•  Whenever an environment variable is used, instead of 
returning the expected value, it returns a huge character 
string, in an attempt to ferret out buffer overflows. 



Fuzzing Pros/Cons 
•  Pro: Fuzzing can be automated 
•  Pro: Fuzzers designed for specific protocols/file 

formats can use complex algorithms to iteratively 
refine input in a very effective way. 

•  Pro: complex fuzzers are widely and effectively 
used to find vulnerabilities in closed source 
applications. 

•  Con: small source code coverage 
•  Con: high false positive rate 
•  Con: low quality bugs 



Reverse Engineering 

•  This essentially amounts to manual inspection 
of the target programs assembly code to look 
for potential vulnerabilities. 

•  Beyond the scope of this course (take the 
Reverse Engineering course). 

•  However, a more automated form of reverse 
engineering is breaking ground in the 
vulnerability discovery field… 



•  Binary diffing of patches from vendors can yield silently patched security 
vulnerabilities. 

•  See Jeongwook Oh’s “ExploitSpotting” presentation from Blackhat USA 2010 and his 
related program DarunGrim. www.darungrim.org 



Closed Source Auditing Recap 
•  Fuzzing, Reverse Engineering, and Binary Diffing are 

all viable methods for finding vulnerabilities in closed 
source applications. These tools are currently used by 
researchers to find vulnerabilities in commercial 
software at a rapid rate. 

•  Further analysis of them is beyond the scope of the 
course since in depth understanding of them requires 
significant reverse engineering knowledge, but I 
encourage you to seek out these tools on your own time 
and play with them; you just may find the next Adobe 
Reader vulnerability! 



Open Source Code Auditing 

•  Having access to a programs source code can 
make auditing both easier and harder. 

•  Source code access gives you more auditing 
options; manual source code inspection and 
automated source code analysis. 

•  However, open source code is often extensively 
peer reviewed. The end result is that any 
remaining bugs are usually extremely hard to 
spot, and non-trivial to take advantage of. 



Automated Source Code Analysis 

•  Software exists to automate the process of source code inspection. 
•  Here is an example of ‘splint’, a free open source analyzer, run our 

simple_login example program. 



Word on the Street 

•  Automated source code analyzers are possibly 
good as a starting point, but they have a couple 
important weaknesses. 

•  They generally only find rudimentary bugs that 
are spotted quickly with manual source code 
inspection. 

•  False positive rate is extremely high 



Manual Inspection 

•  The most subtle and longest surviving bugs are 
usually found by manual inspection because 
discovering them often depends on a deep 
understanding of the code that automated tools 
can’t account for. 

•  When auditing software that you have source 
code for, manual inspection will always be part 
of your methodology. 



Know your target 

•  Base your search for vulnerabilities on knowledge of 
the details of the software. 

•  If you are auditing OpenSSH, or another extensively 
peer reviewed application, you are probably not going 
to find any strcpy(buffer, user_data) vulnerabilities.  

•  If you are auditing a project that has seen little or no 
peer review, searching for rudimentary bugs first may 
be fruitful. 



Areas to focus on 
•  Limit your search to code that handles attacker/user 

manipulated values/data. 
•  Start where user input enters the program, and drill 

down on the paths of code that can be reached by 
changing the user input. 

•  Try to understand the purpose and design of the code 
that interacts with user values. 

•  Put yourself in the developers shoes. “If I was going to 
implement this, how would I do it, and what might be 
some potential problems with that approach? 

•  Investigate obscure code path’s that are rarely reached. 



Problem Areas 

•  Focus on problem areas where vulnerabilities 
often appear. These include: 

1.  Manual parsing of user input/loops that 
process user data in an iterative fashion. 

2.  Places where bounds checking is already 
occurring. 

3.  Places where user controlled integers are used 
in calculations. 



RTFM 

•  Documentation/code comments often hint at 
possible code problems, or places where a fix 
needs to occur. Reading the documentation for 
known crashes and bugs sometimes uncovers 
an underlying vulnerability. 

•  I’ll often scan code comments for strings such 
as “not right” “???” “crash” “doesn’t work” 
“error” and so on. 



•  The following code led to a severe vulnerability in 
perl. The author seemed to be aware his code 
might be taken advantage of somehow… 



•  Look at recently patched bugs/crashes/
vulnerabilities. 

•  Often the underlying issue was not completely 
correct, and a vulnerability might still exist. 



•  In the end, discovering vulnerabilities is not a science. 
It is a black magic that requires that you hone your 
skills with practice. 

•  Remember this: modern developers are more security 
conscious than ever.  To find vulnerabilities in their 
software you must understand the subtleties of their 
code, the language they are using, and the system they 
are running it on, better than them. 



 
•  At this point, people have realized that trying to 

eradicate software vulnerabilities is a losing battle. 
•  Instead of trying to stop vulnerabilities, vendors are 

trying to stop exploits. 
•  Operating Systems that try to be secure can’t control 

how buggy the 3rd party software they support is. 



Exploit Mitigation Technology 
•  Our exploits have been leveraging the fact that 

typical Von Neumann architecture does not 
distinguish between code and data. 

•  Recall that we are typically redirecting execution 
flow into a buffer used for data under normal 
purposes. 

•  One of the first exploit mitigation technologies 
attempted to invalidate data areas (specifically the 
stack) as a legitimate target for execution control 
flow. 



•  No Execute Stack was one of the first real attempts to mitigate the 
abundant stack overflows. 

•  Unfortunately, as a side effect of the Von Neumann architecture that 
most modern processors are based off of, there was no hardware 
support for implementing this 

•  As a result, first implementations of the No Execute Stack patch 
were brutal hacks that involved reprogramming critical portions of 
kernels page fault handling. 

•  There were performance, backwards compatibility, and 
maintainability issues hindering most implementations. 

•  As a result, No Execute stack was not widely adopted by Linux 
distributions. 

There, I fixed it! 



•  Fortunately, hardware manufacturers caught on to 
the need for hardware supported no execute 
functionality. 

•  Most modern chips (my laptop included) have 
hardware supported no-execute pages.  

•  This allows for even better protection than 
previous no-execute hacks offered, without any of 
the negative side effects. 



DEP in Action 



•  Unfortunately, DEP/NX bit/ExecShield, 
whatever you want to call it, is easily 
subverted on its own. 

•  Turns out the guy that originally programmed 
the No Execute Stack patch also quickly 
developed a technique to defeat it. 



•  Consider this example. The buffer is clearly too 
small for normal shellcode. Now imagine that you 
can’t put shellcode elsewhere either (environment, 
command line argument). 

•  All you can do is overwrite the frame pointer and 
return address. 

•  How do you gain arbitrary code execution? 



•  Remember, you don’t always have to inject arbitrary code into the 
target program, to get it to do what you want to do. 

•  You don’t normally have something as convenient as “go_shell” laying 
around, but you do have something almost as good…. 

Remember… 



•  The Operating System automatically loads the standard c library into 
executing processes. 

•  Since we can control the stack with our overflow, we can return into 
these standard library functions instead of returning into shellcode. 

•  Using the standard c library, we can accomplish pretty much anything 
we want to. 



Calling libc functions 

•  When calling a libc function, the arguments are 
pushed onto the stack (in reverse order). 

•  The system() libc function executes any command 
we want, essentially achieving arbitrary code 
execution.  



Exploiting libc lab 

•  Your goal is to exploit smallbuf.c by returning into libc 
instead of returning into injected shellcode. 

•  Basic idea: you will overwrite the saved return address 
with the address of the libc system() call.  

•  Hint 1: think of what argument you want passed into 
system(). Probably something like “/bin/sh.” Where 
will this argument come from? The string has to exist 
somewhere in the process memory. 

•  Hint 2: When you hijack control of execution flow into 
system(), think of what the system() function expects 
the stack to look like. In particular, where does it expect 
its arguments to exist? 



State of Stack 

•  When system() is called it expects a return 
address and then the address of the argument 
(“/bin/sh”) on the stack. 



“/bin/sh” 

•  In this case, we will simply inject the “/bin/sh” 
string into the program via the command line 
and find the address of the string with a 
debugger. 

•  However, with all the extra junk loaded into a 
process, you can also find extraneous instances 
of the “/bin/sh” string loaded into all processes 
via required libraries like libc. 



•  First we fill up smallbuf with 16 bytes of junk, 
then 4 extra bytes to overwrite the saved frame 
pointer. 

•  Then we overwrite the saved return address with 
the address of the libc system() call (0xb7ebcf40). 

•  Next we write 4 extra bytes of junk “AAAA”, 
representing what the system() call will view as 
the saved return address. 

•  Finally, we write the address of the “/bin/sh” 
string we injected on the command line 
(0xbffff79b) so that the system() call views this as 
its passed argument. 



•  We just gained arbitrary code execution 
without executing any data as code (no 
shellcode). 

•  The moral of the story is that DEP/No Execute 
Stack/etc is pretty much useless on it own. 



•  Our return2libc attack was successful because we could successfully 
predict where the system() libc function would be, as well as the “/bin/
sh.” 

•  In this case, the system() function ends up at the same address every 
time: 0xb7ebcf40 

•  In general, many exploitation methods rely on being able to reliably 
predict where certain things will be in memory during a processes 
lifetime. 



Address Space Layout 
Randomization 

•  ALSR is an exploit mitigation technique that 
does exactly what it says. 

•  If implemented correctly, it makes it very 
difficult for the attacker to correctly be able to 
guess the address of important structures and 
functions which are vital to successful 
exploitation. 



•  Notice now the address of the system() function moves 
around when ASLR is turned on, compared to its static 
location we previously observed.  



•  Similarly, ASLR makes it harder to predict the 
address of buffers that you might store shellcode 
in. 

•  Thus, ASLR does makes it more difficult to 
perform both ret2libc style exploitation, and 
traditional shellcode style exploitation. 



Problems with ASLR 

•  Notice this isn’t exactly random, and the system 
function address fits the pattern 0xb7eXXfd0.  

•  The attacker only has to guess 8 bits worth of 
information to successfully perform the attack.  



Problems with ASLR 2 

•  In each case, the difference between system and exit 
functions is 0xA6F0. 

•  Therefore is the attacker can discover the address of one 
function, he automatically knows the address of the other. 



ASLR Conclusion 
•  The problem with ASLR is generally in the 

implementation. 
•  In general, ASLR is not completely random. 
•  It is hard for a processes address space to be 

completely random because of performance, 
optimization, and backwards compatibility 
concerns. 

•  Attacks can sometimes exploit these gaps in the 
implementation to execute arbitrary code in an 
ASLR environment. 



ASLR + DEP 

•  When combined, ASLR and DEP combined 
are able to stop many exploit attempts. 

•  DEP forces the attacker into a return oriented 
programming/ret2libc style attack. 

•  ASLR makes it difficult to determine 
important addresses in the target processes 
address space. 



The battle continues 

•  As with all other subfields of computer security, the cat 
and mouse chase between exploit mitigation techniques 
and exploits goes on and will probably never end. 



The End 

•  With your new found skills, you can develop new 
exploits, or new exploit defenses. 

•  Now that you have a good base, I encourage you to 
hone your skills beyond this course. 

•  There is a vast expanse of exploit technology material 
out there waiting for you to discover… 


