
Instructions

Special 
Purpose 
Register:
*FLAGS

IDA Pro

The Stack

General 
Purpose 
Registers

Calling 
Conventions

Introduction to Reverse Engineering
Medium-granularity class topics covered

Matt Briggs & Frank Poz
CC BY AT licensed

hosted at OpenSecurityTraining.info

Questions 
a RE tries 
to answer



Exception 
Handling

Calculating current 
address with "call $

+5" (aka "call 0 bytes 
past end of instruction")

Indirect 
Call/Jump

Interrupts 
(e.g. "int 3")

General Approach & 
Questions to Ask 
When Analyzing a 

Function

Recognizing 
Data 

Structures

How C++ 
Manifests Itself 

in Assembly
Obfuscated 
Control Flow IDA Pro

Opening A 
File

IDB (IDA 
Database) 

Files

Graph 
View

Assembly 
View Hex View Exports 

View
Imports 

View
Function 

View
Strings 
View

Navigating 
Assembly

FLIRT 
Signatures

Debugging 
Binary

Open File 
Dialog 
Box

OutputsInputs
Control 

Flow 
Analysis

Loading 
Symbols

Zooming

{ctrl + 
scroll wheel}

Redrawing

{Right click -> 
Layout Graph}

Graph 
Overview 
Window

Color Coded Branches

(Blue = condition true, 
Red = condition false,
Dark Blue = Loop jump 

backwards) 

Toggling 
Graph/

Assembly 
View

{space bar}

Enabling Addresses

{Options Menu -> 
General -> 

Line Prefixes

Grouping & 
Collapsing Graph 

View Nodes

{ctrl click multiple 
nodes, right click -> 

Group Nodes,
enter name, click OK}

Context 
Highlighting

Coloring CFG Blocks

{Edit ->
Other ->

Color Instruction}
or

See video for where 
to click on graph

Function Name 
Colors

(Statically 
Linked = Light 

Blue

Dynamically 
Linked = Pink

User-defined = 
default 

instruction 
color)

Instruction 
Coloring 

Conventions
& Relation to 

CFG 
Coloring)

Conveying
Meaning 
Through 

Color

Manipulating 
Your 

Environment

Text View 
Comment vs. 

Instruction 
Addresses

Undefine 
Bytes

{u}

Defining 
Data to be 

Code

{c}

Changing the Radix of 
Constants to/from hex

{h}

Defining 
Data to be 
an ASCII 

String

{a}

Rename 
Address

{n}

Defining 
Data to be 
an ASCII 
Character

{r}

Define a 
Function 

(causes IDA to 
try to determine 

and display 
input 

parameters)

{p}

Editing Sizes & 
Locations of 

Displayed Stack 
Arguments/

Local Variables

{Edit ->
Functions-> 

Stack Variables}
or

{ctrl + k}

Defining Custom 
Structures

{View->
Open Subviews -> 

Structures}
or

{shift + F9}

Add 
comment 

{;}

Rebase 
Executable

{Edit Menu -> 
Segments -> 

Rebase Program}

Jump/Goto 
Arbitrary 
Address

{lowercase g + 
address}

Jump/Goto 
Currently 

Highlighted 
Address

{ctrl + enter}

Return to 
Previous 
Address

{escape key}

Double clicking control 
flow transfer targets to 

follow control flow

IDA 
Navigation 

Bar

Taking sneak peek at 
target address

{mouse over to bring 
up code, optionally 

scroll wheel down to 
increase the amount 

of code shown}

Control Flow 
Arrows 

(Assembly View)

Call 
Graphs

{View ->
Graphs ->
Function 

Calls}
or

{ctrl + F12}

No Calls
"Regular" 
Function 

Calls

Library 
Function 

Calls

Indirect 
Function 

Calls/
Jumps

What is the 
return value 
and, moving 
backwards 
through the 
code, how 

did it get set?

Does eax get 
set at the 
end of the 
function?

Does the output 
get compared 

against anything 
after this function 

returns?

Are any "passed-by-
reference" input 

parameters dereferenced 
and written to? 

Is there any 
networking code, and 
if so does it send data 

or only receive?

Are any 
files 

written?

Are any special data 
structures (e.g. the 
Windows Registry, 
mutexes, network 

interface configuration) 
written?

Does the 
code 

directly call 
any system 

calls?

Are any globals 
written to in 

this function?

Is this a leaf node, or is 
it possible there is 

obfuscated control flow 
(such as an exception) 

to exit this function?

Am I confident I know 
enough obfuscated 

control flow methods 
to spot one if it's 

being used?

Does this 
function 

recurse to 
itself?

Does this function 
call the same sub-
functions in many 

different locations?

Where else are 
these functions 

called in the binary?
(Use {x} to see 

cross-references for 
a function.)

Are these 
functions 

used many 
places 

throughout 
the code or 
only here?

Do we think it is 
therefore holding 

a return value, 
per convention?

What 
parameters 
are sent to 
the system 
call, and 

what 
should the 
system call 

do in 
response?

Is there 
any 

networking 
code, and 

if so does it 
receive 
data or 

only send?

Are any 
globals 

read in this 
function?

Does this read 
command line 
parameters?

Are any special data 
structures (e.g. the 
Windows Registry, 
mutexes, network 

interface configuration, 
environment variables) 

read?

Are any 
files read?

What are 
the literal 

input 
values?

Are the inputs 
therefore in 

registers, on the 
stack, or both?

What is the 
calling 

convention 
being used 

to pass 
information 

into this 
function?

What well-known APIs 
does this function call, 
and what data can it 
get back from them?

Where can 
I look up 

the inputs/
outputs of 

these 
functions?

Are they "regular" 
files, directories, or 
"special" files like a 

named pipe?

What are 
the names/
locations of 
the writes?

What data 
was actually 

written?

What is the control 
flow target value and, 

moving backwards 
through the code, 
how did it get set?

Does this seem like a legitimate 
location where a function pointer 

might be used in a high level 
language, or a purposeful 
control flow obfuscation?

Is the target a "well-formed" 
function with a prolog/epilog 

or is otherwise following 
some compiler conventions?

Are any "passed-
by-reference" 

input parameters 
dereferenced and 

read from? 

Do any of the pointers 
look to be pointers to 

structures where fields 
are read from?

(TODO: hopefully we 
have some video we 

can point at which talks 
about what a structure 

dereference looks like in 
asm)

What are 
the sizes of 
the fields of 

the 
structure?

Calls
Is there 

conditional 
control 
flow?

Are there 
loops in this 

function?

Are there 
nested 
loops?

Does this loop 
look like a 

while() loop?

Do any of the pointers 
look to be pointers to 

structures where fields 
are written to?

(TODO: hopefully we 
have some video we 

can point at which talks 
about what a structure 

dereference looks like in 
asm)

What are 
the names/
locations of 
the reads?

What data was 
actually read?

Does this 
look like a 
for() loop?

Does this 
look like an 

if() 
statement?

Does this 
look like an 

if()else() 
statement?

Does this 
look like a 
switch() 

statement?

Windows 
Structured 
Exception 
Handling 

(SEH)

If so, do any 
conditions obviously 

lead to an early exit or 
presumed error case?

Strings Arrays Linked 
Lists

C++ 
Classes Structs

ASCII 
String

Pascal 
String

Unicode 
String

Setting Command 
Line Options

{Debugger Menu -> 
Process Options}

Setting A 
Breakpoint

{F2}

Starting the 
Debugger

{F9}

Passing 
exceptions to 

IDA or the 
application

Continuing 
Execution

{F9}

IDA Debug 
View 

Windows

Stopping the 
Debugger

{ctrl + F2}

Stack Trace 

{Debugger Menu ->
 Tracing ->

 Stack Trace}
or

{ctrl + alt + s} 

IDA ViewStack Registers

Changing all 
Exception Handling 

Preferences

{File Menu -> 
Debugger Options -> 

Exceptions -> 
Edit ->

Right Click}

Changing Data Sizes

 {hit d repeatedly to 
cycle through 1, 2, and 4 
byte data sizes, when in 

Stack Frame tab}

Jump table behind 
the scenes for a 
switch statement

Conditional 
Breakpoints

{right click 
breakpoint and 

select edit}

Add/Delete 
Structure

{ins/del}

Add Structure 
Member

 {hit d repeatedly to 
cycle through 1, 2, 

and 4 byte data 
sizes}

or
{a} (for ascii string)

or
{+} (for array)

Applying a Structure 
Definition to Code

{select code, press t,
select desired 

structure definition}

Applying a Structure 
Definition to Data

{select data, 
press alt + q,
select desired 

structure definition}

Uncollapse 
Nodes

{see video}

Edit Group 
Text

{see video}

Collapsing 
Group 

Again After 
Expansion

{see video}

Working 
With Files

User 
Interface 

Misc

Bottom plugins/
loading/general 

information 
window

IDA 
Buttons (& 
removing 

them)

Finding 
Locations 
That Call 
an Import

Remove Custom 
Name

{hit n, then delete 
entire name and 

hit return}

Green nodes can be clicked to go to the video for this topic
Introduction to Reverse Engineering
Fine-granularity class topics covered

Matt Briggs & Frank Poz
CC BY AT licensed

hosted at OpenSecurityTraining.info

The "this" 
pointer Constructors Destructors

Inheritance & 
Virtual 

Function 
Table 

("vtable")

Visual Studio 
passes the "this" 

pointer to 
functions in the 

ecx register

GCC passes the "this" 
pointer to functions as the 

last parameter pushed 
onto the stack in cdecl 

convention, therefore like 
an invisible first parameter 

(since parameters are 
pushed right to left) 

Class 
Member 
Access

Constructors 
construct the 

vtable

http://www.youtube.com/watch?v=byK0tXH5axQ#t=55m37s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=51m57s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=53m41s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=54m22s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=51m57s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=8m50s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=2m03s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=19m36s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=24m42s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=21m53s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=22m04s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=22m58s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=25m12s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=26m22s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=45m49s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=10m37s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=48m57s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=50m52s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=11m41s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=21m17s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=31m03s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=22m04s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=33m48s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=25m30s
http://www.youtube.com/watch?v=uNLxDrVzFCk#t=4m45s
http://www.youtube.com/watch?v=7V3-0DL4Syw#t=29m15s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=22m41s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=26m50s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=37m39s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=31m56s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=43m06s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=43m14s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=45m32s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=43m06s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=8m44s
http://www.youtube.com/watch?v=uNLxDrVzFCk#t=24m58s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=43m30s
http://www.youtube.com/watch?v=uNLxDrVzFCk#t=14m15s
http://www.youtube.com/watch?v=7V3-0DL4Syw#t=16m27s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=36m06s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=42m10s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=37m17s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=37m39s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=3m54s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=25m17s
I_know_this_is_in_there_somewhere_but_I_cant_find_it.Can_you_help_find_it?
http://www.youtube.com/watch?v=byK0tXH5axQ#t=44m21s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=45m31s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=46m40s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=47m57s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=1h10m42s
http://www.youtube.com/watch?v=uNLxDrVzFCk#t=7m39s
http://www.youtube.com/watch?v=byK0tXH5axQ#t=55m37s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=1h13m56s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=17m43s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=19m51s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=20m26s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=22m37s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=22m00s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=26m01s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=28m52s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=24m42s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=26m10s
http://www.youtube.com/watch?v=vhJ3KZLF2Bc#t=26m34s
http://www.youtube.com/watch?v=uNLxDrVzFCk#t=2m21s
http://www.youtube.com/watch?v=uNLxDrVzFCk#t=16m08s
http://www.youtube.com/watch?v=uNLxDrVzFCk#t=23m52s
http://www.youtube.com/watch?v=uNLxDrVzFCk#t=33m00s
http://www.youtube.com/watch?v=7V3-0DL4Syw#t=24m10s
http://www.youtube.com/watch?v=7V3-0DL4Syw#t=24m25s
http://www.youtube.com/watch?v=7V3-0DL4Syw#t=28m19s
http://www.youtube.com/watch?v=7V3-0DL4Syw#t=32m02s
http://www.youtube.com/watch?v=7V3-0DL4Syw#t=32m07s
http://www.youtube.com/watch?v=7V3-0DL4Syw#t=34m33s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=6m18s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=3m10s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=23m14s
http://www.youtube.com/watch?v=03MuoFUtmhg#t=58m45s

	Medium level
	Low level

