
Compiling

Linking

Loader

Microsoft
Windows
Debugger

GNU
Debugger

(GDB)

Microsoft
Visual
Studio

GNU C
Compiler

(GCC)

Portable
Executable

(PE)

Executable
& Linking
Format
(ELF)

Dynamic
Linking

Life of Binaries: Medium Nuggets

Compiler

Loader

Syntax vs.
Semantics

Lexical
Analysis

Syntax
Analysis

Lexemes

FLEXANTLR

Lexing
Tools

Tokens

Context
Free

Grammar
(CFG)

CFG
Parsing
Tools

YACCBISON ANTLR CUPBackus-Naur
Form (BNF)

Parse Tree
aka

Concrete
Syntax Tree

Syntax
Graphs

Abstract
Syntax

Tree (AST)

Abstract
Assembly

Tree (AAT)

Native
Machine

Instructions

Intermediate
Representation

(IR)

Expression
Trees

Statement
Trees

Constant Register Operator Memory Call

Move Sequential Call Label &
Jump

Conditional
Jump

Object File
Format

Linker

Executable &
Linking Format

(ELF)

Executable
File Format

Static
Linking

Dynamic
Linking

Portable
Executable (PE) &

Common Object
File Format (COFF)

PE File
Analysis

Tools
DOS

Header

PEView CFF
Explorer

PE (NT)
Header

Section
Headers

File
Header

"Optional"
Header

Data
DirectoryDllCharacteristicsFileAlignment,

SectionAlignment AddressOfEntryPoint ImageBase,
SizeOfImage

Security-relevant
DllCharacteristics

IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE IMAGE_DLLCHARACTERISTICS_NX_COMPATIMAGE_DLLCHARACTERISTICS_NO_SEH IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY

Microsoft
Visual
Studio

Microsoft
Windows
Debugger
(WinDbg)

Creating C
Project

Editing
Project

Properties

Specifying an Export:
__declspec(dllexport)

in Source Code

Security-
Relevant

Linker
Options

Changing
Section
Names

Merging
Sections

Setting
DLL to

Delay Load

Specifying an
Export::

Add .def File
with EXPORT

Directive

Specifying
an Export:

Security-
Relevant
Compiler
Options

/DYNAMICBASE /FIXED:NO /NXCOMPAT/SAFESEH

Address Space
Layout

Randomization
(ASLR)

Windows' W^X:
Data Execution

Protection (DEP)

Write XOR Execute
(W^X) Memory

Permissions

Windows'
ASLR

Windows'
Structured
Exception

Handling (SEH)

SEH
Exploit

Protection

Windows' Code
Signing

("Authenticode")

DataDirectory[0]:
IMAGE_DIRECTORY_ENTRY_EXPORT

Forwarded
Exports:
Concept

DataDirectory[1]:
IMAGE_DIRECTORY_ENTRY_IMPORT

DataDirectory[2]:
IMAGE_DIRECTORY_ENTRY_RESOURCE

Storing Binaries
Like a Kernel

Driver in
Resources

DataDirectory[3]:
IMAGE_DIRECTORY_ENTRY_EXCEPTION

DataDirectory[4]:
IMAGE_DIRECTORY_ENTRY_SECURITY

DataDirectory[5]:
IMAGE_DIRECTORY_ENTRY_BASERELOC

Relation to
Memory
Integrity

Verification

DataDirectory[6]:
IMAGE_DIRECTORY_ENTRY_DEBUG

DataDirectory[7]:
IMAGE_DIRECTORY_ENTRY_COPYRIGHT

DataDirectory[8]:
IMAGE_DIRECTORY_ENTRY_GLOBALPTR

DataDirectory[9]:
IMAGE_DIRECTORY_ENTRY_TLS

Anti-debug:
Execute

Code with
TLS

Callback

DataDirectory[10]:
IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG

DataDirectory[11]:
IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT

DataDirectory[13]:
IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT

DataDirectory[[14]:
IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR

Common
Section
Names

VirtualSize vs.
SizeOfRawData &

Relation to
FileAlignment &

SectionAlignment

NumberOfSectionsTimeDateStamp Characteristics

Resolve
Imports

Apply
Relocations

Execute
TLS

Callbacks
Jump to

AddressOfEntryPoint
Map From

File To
Memory

Dynamic
Linking

Load
Dependancies

Malware
Attribution:

Compile
Time

IMAGE_IMPORT_DESCRIPTOR

"Regular"
Imports:
Concept

NameFirstThunk OriginalFirstThunk

Import
Names

Table (INT)

Import
Address

Table (IAT)

Import by
Name

Import by
Ordinal

IAT on
Disk vs. in
Memory

Hooking:
IAT

Hooking

Opening
Executable

Attaching
to Running
Executable

Local
Kernel

Debugging

Kernel
Debugging
Via Serial

Port

Kernel
Debugging

Via
Firewire

Setting Up
Debugging

Environment

Setting
Symbol

Path

Dragging
Windows
To Split
Screen

Viewing
Registers

Viewing
Memory

Viewing
Disassembly

Customizing
Registers
Window

Open
Registers
Window

Via
Command
Window

? <register name>

Debugging

Setting
Breakpoints Stepping

Open
Memory
Window

Open
Disassembly

Window

Via
Command
Window

Via
Command
Window

Unassemble
u <address> L<number of instructions>

Display:
Bytes: db <address> L<number of bytes>

Doublewords: dd <address> L<number of dwords>
Quadwords: dq <address> L<number of qwords>

Graphically
Via

Command
Window

Graphically
Via

Command
Window

Set
Software

Breakpoint

Set
Hardware
Breakpoint

Breakpoint
Control:

Set/Unset
Software

Breakpoint

Create Breakpoint:
bp <address>

Delete Breakpoint:
bc <breakpoint address or number>

Placeholder:
Covered in

Intermediate
x86

List Breakpoints:
bl

Enable Breakpoint:
be <breakpoint address or number>

Disable Breakpoint:
bd <breakpoint address or number>

Step Into:
t

Step Over:
p

"Bound"
Imports:
Concept

"Delay Load"
Imports:
Concept

IMAGE_BOUND_IMPORT_DESCRIPTOR

Relation to
ASLR

TimeDateStamp OffsetModuleName

rvaDLLNamervaIAT

Dynamic
Linking

Runtime
Linking:
Concept

Exports:
Concept

Windows APIs:
LoadLibrary{Ex}() and

GetProcAddress()

IMAGE_EXPORT_DIRECTORY

AddressOfFunctions

AddressOfNames AddressOfNameOrdinals

Malware:
Stuxnet's

Use of
Forwarded

Exports

DataDirectory[12]:
IMAGE_DIRECTORY_ENTRY_IAT

Thread Local
Storage (TLS):

Concept
Relocations:

Concept
Resources:

Concept

Debugging
Symbols

Symbols

Export
Address

Table
(EAT)

Export
Names
Table
(ENT)

Hooking:
EAT

Hooking

IMAGE_DEBUG_DIRECTORY

"Code
View"

Debugging
Symbols

Malware
Attribution:
PDB Build

Path

IMAGE_BASE_RELOCATION

Relation to
Memory
Integrity

Verification

IMAGE_TLS_DIRECTORY

Malware
Usage to

Store
Shellcode
& Binaries

Security-
Relevant

Fields

IMAGE_LOAD_CONFIG_DIRECTORY

SecurityCookie SEHandlerTableSEHandlerCount

/GS

Stack
Canaries/
Cookies:
Concept

Malware:
Viruses:
Concept

Malware:
Packers:
Concept

"Signature file
containing the signed

content of a public
key certificate

standard (PKCS) #7
signed-data object"

"Used for architectures with table-
based exception handling, such as

the IA-64. The only architecture
that doesn't use table-based

exception handling is the x86."

"This value has been renamed to
IMAGE_DIRECTORY_ENTRY_COMHEADER in
more recent updates to the system header files. It

points to the top-level information for .NET
information in the executable, including metadata.

This information is in the form of an
IMAGE_COR20_HEADER structure."

"Points to architecture-specific data, which is an
array of IMAGE_ARCHITECTURE_HEADER

structures. Not used for x86 or IA-64, but appears
to have been used for DEC/Compaq Alpha."

"The VirtualAddress field is the RVA
to be used as the global pointer (gp)
on certain architectures. Not used on

x86, but is used on IA-64."

File-
Infecting
Viruses

Append Virus
to End of File

Write Virus
Over

Padding
Data

Redirect
Headers'

Entry Point
to Virus

Don't Modify
Headers, Place
Inline Hook to
Redirect Entry
Point to Virus

Add TLS
Callback to
Call Virus

Malware:
PE

Modifiers

Hot
Patching
Binaries

Example
Packer:

UPX

AppInit_DL
Ls

Reflective
DLL

Injection

DLL
Injection:
Concept

Inline
Hooks:

Concept

Games
Nerds Play:

Minimal
Sized

Executables

TinyPE TeenyELF TinyMach-O

Life of Binaries: Small Nuggets

	LoB Medium Nuggets
	LoB Small Nuggets

