
Intermediate Intel x86: 
Assembly, Architecture, 

Applications, and Alliteration 

Xeno Kovah – 2010 
xkovah at gmail 

 



All materials are licensed under a Creative 
Commons “Share Alike” license. 

•  http://creativecommons.org/licenses/by-sa/3.0/ 

2 



Credits Page 

•  Your name here! Just tell me something 
I didn’t know which I incorporate into 
the slides! 

•  Veronica Kovah for reviewing slides and 
suggesting examples & questions to 
answer 

•  Murad Kahn for Google NaCl stuff 

3 



4 

Answer me these questions three 

•  What, is your name? 
•  What, is your quest? 
•  What…is your department? 



5 

Agenda 

•  Part 1 - Segmentation 
•  Part 2 - Paging 
•  Part 3 - Interrupts 
•  Part 4 – Debugging, I/O, Misc fun on a 

bun 



6 

Miss Alaineous 

•  Questions: Ask ‘em if you got ‘em 
–  If you fall behind and get lost and try to tough it out 

until you understand, it’s more likely that you will 
stay lost, so ask questions ASAP. 

•  Browsing the web and/or checking email 
during class is a great way to get lost ;) 

•  2 hours, 10 min break, 2 hours, 1 hour lunch, 
1 hour at a time with 5 minute breaks after 
lunch 

•  Adjusted depending on whether I’m running 
fast or slow (or whether people are napping 
after lunch :P) 



7 

Class Scope 
•  We’re going to only be talking about 32bit 

architecture (also called IA-32). No 16bit or 64bit. 
•  Also not really going to deal with floating point 

assembly or registers since you don’t run into them 
much unless you’re analyzing math/3d code. 

•  This class focuses on diving deeper into architectural 
features 

•  Some new instructions will be covered, but mostly in 
support of understanding the architectural topics, only 
two are learning new instruction’s sake. As shown in 
last class, we have already covered the majority of 
instructions one will see when examining most 
programs. 



8 

What I hope you get out of the 
class 

•  A better understanding of Intel architecture 
and how it’s leveraged by OSes 
–  Which can in turn translate to understanding how 

OSes are virtualized 
•  Knowledge of where hardware support for 

security exists, and how it is or isn’t used. 
•  A base for understanding even more 

advanced features. The curiosity to 
independently explore advanced features. 

•  The satisfaction that comes with knowing how 
something works at a very fundamental level.  



9 

Instructions Quiz 
•  Learned around 26 instructions and variations 
•  About half are just math or logic operations 
•  NOP 
•  PUSH/POP 
•  CALL/RET 
•  MOV/LEA 
•  ADD/SUB 
•  JMP/Jcc 
•  CMP/TEST 
•  AND/OR/XOR/NOT 
•  SHR/SHL/SAR/SAL 
•  IMUL/DIV 
•  REP STOS, REP MOVS 
•  LEAVE 



10 

Stack Quiz:  
Example1.c 

//Example1 - using the stack  
//to call subroutines 
//New instructions:  
//push, pop, call, ret, mov 
int sub(){ 
     return 0xbeef; 
} 
int main(){ 
     sub(); 
     return 0xf00d; 
} 

sub:	
00401000  push        ebp  	
00401001  mov         ebp,esp 	
00401003  mov         eax,0BEEFh 	
00401008  pop         ebp  	
00401009  ret 	
main:	
00401010  push        ebp  	
00401011  mov         ebp,esp 	
00401013  call        sub (401000h) 	
00401018  mov         eax,0F00Dh 	
0040101D  pop         ebp  	
0040101E  ret 	



11 

Madness 
That’s what 
you’re going to 
learn! :D 



12 

THIS!  
IS! 

INTERMEDIATE 
X86!!! 

As a nerd I actually find this graphic to be disappointingly inaccurate because this is 
not where he said the line…I couldn’t find a good picture of that moment. 

If I took any pride in my work I would have rented the video and taken a screen shot… 

ME 

You 
by the  
end 



13 

Morning Warm Up 
CPUID - CPU (feature) Identification 

•  Different processors support different features 
•  CPUID is how we know if the chip we’re running on 

supports newer features, such as hardware 
virtualization, 64 bit mode, HyperThreading, thermal 
monitors, etc. 

•  CPUID doesn’t have operands. Rather it “takes 
input” as value preloaded into eax (and possibly 
ecx). After it finished the outputs are stored to eax, 
ebx, ecx, and edx.  



14 

How do we even know if we 
can use CPUID? 

•  CPUID not added until late model 486s 
•  ID Flag in EFLAGS (bit 21) 
•  “The ability of a program or 

procedure to set or clear this flag 
indicates support for the CPUID 
instruction.” (Vol. 3a, Sect. 2.3) 

• How do we read/write to EFLAGS? 
• PUSHFD/POPFD 



15 

PUSHFD - Push EFLAGS onto Stack 

•  If you need to read the entire EFLAGS 
register, make sure you use PUSHFD, 
not just PUSHF. (I found Visual Studio 
forces the 16 bit form if you don’t have 
the D!) 



16 

POPFD - Pop Stack Into EFLAGS 

•  There are some flags which will not be transferred 
from the stack to EFLAGS unless you’re in ring 0. 

•  If you need to set the entire EFLAGS register, make 
sure you use POPFD, not just POPF. (I found Visual 
Studio forces the 16 bit form if you don’t have the D!) 



17 

Some Example CPUID Inputs and Outputs 
REGISTER 

BEFORE CPUID 
EXECUTES 

REGISTERS 
AFTER CPUID  

EXECUTES 



18 

Lab: CPUID.c 
int main(){ 
     unsigned int maxBasicCPUID; 
     char vendorString[13]; 
     char * vendorStringPtr = (char *)vendorString; //Move the address into its own register 
                                                                             //because it makes the asm syntax easier 
 
     //First we will check whether we can even use CPUID 
     //Such a check is actually more complicated than it seems (OMITED FROM SLIDES) 
     if(CheckIfWeCanUseCPUID() == 1){ 
          __asm{ 
               mov edi, vendorStringPtr; //Get the base address of the char[] into a register 
               mov eax, 0; //We're going to do CPUID with input of 0 
               cpuid;          //As stated, the instruction doesn't have any operands 
               //Get back the results  which are now stored in eax, ebx, ecx, edx 
               //and will have values as specified by the manual 
               mov maxBasicCPUID, eax; 
               mov [edi], ebx; //We order which register we put into which address 
               mov [edi+4], edx; //so that they all end up forming a human readable string 
               mov [edi+8], ecx; 
          } 
          vendorString[12] = 0; 
          printf("maxBasicCPUID = %#x, vendorString = %s\n", maxBasicCPUID, vendorString); 
     } 
     else{ 
          printf("Utter failure\n"); 
     } 
     return 0xb45eba11; 
} 



19 

CPUID Misc 

•  I highly recommend Amit Singh’s CPUID info 
dumping program for *nix systems 
–  http://www.osxbook.com/blog/2009/03/02/

retrieving-x86-processor-information/ 
•  Also see “Intel Processor Identification and 

the CPUID Instruction - Application Note 485” 
for a lot more info about CPUID 
–  http://www.intel.com/Assets/PDF/appnote/

241618.pdf 



20 

In the beginning, there was real 
mode. And it was teh suck. 

•  Real-address Mode - (I call it Real Mode or maybe 
“For Reals Mode…Seriously. For Reals. Mode.”) 
“This mode implements the programming 
environment of the Intel 8086 processor with 
extensions (such as the ability to switch to protected 
or system management mode). The processor is 
placed in real-address mode following power-up or a 
reset.”  

•  DOS runs in Real Mode. 
•  No virtual memory, no privilege rings, 16 bit mode 

Vol. 1, Sect. 3.1 



21 

Processor Modes 2 
•  Protected Mode - “This mode is the native state of 

the processor. Among the capabilities of protected 
mode is the ability to directly execute ‘Real-address 
mode’ 8086 software in a protected, multi-tasking 
environment. This feature is called virtual-8086 
mode, although it is not actually a processor mode. 
Virtual-8086 mode is actually a protected mode 
attribute that can be enabled for any task.” 

•  Virtual-8086 is just for backwards compatibility, and I 
point it out only to say that Intel says it’s not really its 
own mode. 

•  Protected mode adds support for virtual memory and 
privilege rings. 

•  Modern OSes operate in protected mode 
Vol. 1, Sect. 3.1 



22 

Processor Modes 3 
•  System Management Mode - “This mode provides an 

operating system or executive with a transparent 
mechanism for implementing platform-specific functions 
such as power management and system security. The 
processor enters SMM when the external SMM interrupt 
pin (SMI#) is activated or an SMI is received from the 
advanced programmable interrupt controller (APIC).” 

•  SMM has become a popular target for advanced rootkit 
discussions recently because access to SMM memory is 
locked so that neither ring 0 nor VMX hypervisors can 
access it. Thus if VMX is more privileged than ring 0 (“ring 
-1”), SMM is more privileged than VMX (“ring -2”) 
because a hypervisor can’t even read SMM memory. 

•  Reserving discussion of VMX and SMM for Advanced x86 
class 

Vol. 1, Sect. 3.1 



23 
From http://support.amd.com/us/Processor_TechDocs/24593.pdf 



24 

Privilege Rings 
•  MULTICS was the first OS with support for 

hardware-enforced privilege rings 
•  x86’s rings are also enforced by hardware 
•  You often hear that normal programs execute 

in “ring 3” (userspace/usermode) and the 
privileged code executes in “ring 
0” (kernelspace/kernelmode) 

•  The lower the ring number, the more 
privileged the code is 

•  In order to find the rings, we need to 
understand a capability called segmentation 



25 

Rings on x86 

Vol. 3a  
Sect. 5.5 



26 

Paravirtualized Xen 
(requires a modified Guest OS) 

(Newest Xen instead uses hw VMX to be more privileged than OS kernel) 

http://www.valinux.co.jp/imgs/pict/shot/tech/techlib/eos/xen_ia64_memory/figure5.gif 



27 

Segmentation 
•  “Segmentation provides a mechanism for dividing the 

processor’s addressable memory space (called the linear 
address space) into smaller protected address spaces called 
segments.” (emphasis theirs) 

Vol.3a, Sect. 3.1 
& 3.2.3 



28 

Segment Addressing 
•  “To locate a byte in a particular segment, a logical 

address (also called a far pointer) must be provided. A 
logical address consists of a segment selector and an 
offset.” 

•  “The physical address space is defined as the range of 
addresses that the processor can generate on its 
address bus” 
–  Normally the physical address space is based on how much 

RAM you have installed, up to a maximum of 2^32 (4GB). But 
there is a mechanism (physical address extentions - PAE) 
which we will talk about later which allows systems to access a 
space up to 2^36 (64GB). 

–  Basically a hack for people with more than 4GB of RAM but 
who aren’t using a 64 bit OS.  

•  Linear address space is a flat 32 bit space 
•  If paging (talked about later) is disabled, linear address 

space is mapped 1:1 to physical address space 
Vol.3a, Sect. 3.1 



29 

Segmentation Restated 
•  Segmentation is not optional 
•  Segmentation translates logical addresses to linear addresses 

automatically in hardware by using table lookups 
•  Logical address (also called a far pointer) = 16 bit segment 

selector + 32 bit offset 
•  If paging (which is talked about later) is disabled, linear 

addresses map directly to physical addresses 



30 

Assume paging is disabled for now 
linear address == physical address 

Vol.3a, Sect. 3.1 

The wool over your eyes 

The Big Picture 



31 

Segment Selectors 
•  A segment selector is a 16 bit value held in a 

segment register. It is used to select an index for a 
segment descriptor from one of two tables. 
–  GDT - Global Descriptor Table - for use system-wide 
–  LDT - Local Descriptor Table - intended to be a table per-

process and switched when the kernel switches between 
process contexts 

•  Note that the table index is actually 13 bits not 16, so 
the tables can each hold 2^13 = 8192 descriptors 

2 bit “privilege level”? 
Hmmm…getting warm 

push that onto a  
mental stack 



32 

The Six Segment Registers 
(Harbingers of DOOOOOM!!!) 

•  CS - Code Segment 
•  SS - Stack Segment  

–  “Stack segments are data segments which must be read/
write segments. Loading the SS register with a segment 
selector for a nonwritable data segment generates a 
general-protection exception (#GP)” 

•  DS - Data Segment 
•  ES/FS/GS - Extra (usually data) segment registers 
•  The “hidden part” is like a cache so that segment 

descriptor info doesn’t have to be looked up each 
time. 



33 

Implicit use of segment registers 
•  When you’re accessing the stack, you’re implicitly 

using a logical address that is using the SS (stack 
segment) register as the segment selector. (I.e. 
“ESP” == “SS:ESP”) 

•  When you’re modifying EIP (with jumps, calls, or 
rets) you’re implicitly using the CS (code segment) 
register as the segment selector. (“EIP” == 
“CS:EIP”) 

•  Even if a disassembler doesn’t show it, the use of 
segment registers is built into some of your favorite 
instructions. 



Explicit use of segment 
registers 

•  You can write assembly which explicitly specifies 
which segment register it wants to use. Just prefix the 
memory address with a segment register and a colon 

•  “mov eax, [ebx]” vs “mov eax, fs:[ebx]” 
•  The assembly just puts a prefix on the instruction to 

say “When this instruction is asking for memory, it’s 
actually asking for memory in this segment”. We will 
talk about segment prefixes along with other 
instruction prefixes at the end of the class if we have 
time. 

•  In this way you’re actually specifying a full logical 
address/far pointer. 34 



Lab: UserspaceSegmentRegisters.c  

•  Userspace version of code which reads 
the segment 

•  Moves from segment registers to 
memory, but the manual considers that 
the same as the other types of moves 
(but it does describe the special 
constraints which exist when moving to/
from segment registers) 

35 



Lab: KernelspaceSegmentRegisters.c 
•  Kernel version of the same code, 

implemented as a kernel driver. 
•  This isn’t a class on windows drivers, so  

–  open the “Windows XP Checked Build 
Environment” link on your desktop, navigate to 
IntermediateX86Code\KernelspaceSegmentRegisters 

–  type “build –c” 
–  run the magic “load.bat” 

•  We use Sysinternals’ DebugView to see the 
output of the kernel space DbgPrint() 
statements. (They would also show up if 
attached to a kernel debugger.) 

36 



37 

1 

2 

3 



38 

1 

2 

4 

6: results 

3 

5:Confirm 5:Confirm 



Results for our WinXP systems 
(subject to change on other versions, service pack levels, etc) 

Segment 
Register 

RPL Table Index 

CS = 
0x1b 

3 GDT 3 

SS = 
0x23 

3 GDT 4 

DS = 
0x23 

3 GDT 4 

ES = 
0x23 

3 GDT 4 

FS = 
0x3B 

3 GDT 7 

GS = 0 Invalid Invalid Invalid 

39 

UserspaceSegmentRegisters.c 

Segment 
Register 

RPL Table Index 

CS =  
0x8 

0 GDT 1 

SS = 
0x10 

0 GDT 2 

DS = 
0x23 

3 GDT 4 

ES = 
0x23 

3 GDT 4 

FS = 
0x30 

0 GDT 6 

GS = 0 Invalid Invalid Invalid 

KernelspaceSegmentRegisters.c 



Inferences 
•  Windows maintains different CS, SS, & 

FS segment selectors for userspace 
processes vs kernel ones 

•  The RPL field seems to correlate with 
the ring for kernel or userspace 

•  Windows doesn’t change DS or ES 
when moving between userspace and 
kernel (they were the exact same 
values) 

•  Windows doesn’t use GS 
40 



41 

One more time 

GDT or LDT 

One of the segment registers 
(SS/CS/DS/ES/FS/GS) 

Address used in some 
assembly instruction 



GDT & LDT 

42 

All entries in 
these tables 
are “Segment 
Descriptor” 
structures 

Special registers 
point to the base 
of the tables & 
specify their size 



43 

Global Descriptor Table Register 
(GDTR) 

•  The upper 32 bits ("base address") of the 
register specify the linear address where the 
GDT is stored.  

•  The lower 16 bits ("table limit") specify the 
size of the table in bytes. 

•  Special instructions used to load a value into 
the register or store the value out to memory 
–  LGDT - Load 6 bytes from memory into GDTR 
–  SGDT - Store 6 bytes of GDTR to memory 

From Vol 3a. 
Figure 2-5 



44 

Local Descriptor Table Register (LDTR) 

•  Like the segment registers, the LDT has a 
visible part, the segment selector, and a 
hidden part, the cached segment info which 
specifies the size of the LDT. 
–  The selector’s Table Indicator (T) bit must be set 

to 0 to specify that it’s selecting from the GDT, not 
from itself ;) 

•  Special instructions used to load a value into 
the register or store the value out to memory 
–  LLDT - Load 16 bit segment selector into LDTR 
–  SLDT - Store 16 bit segment selector of LDTR to 

memory 

From Vol 3a. 
Figure 2-5 



45 

Segment Descriptors 
•  “Each segment has a segment descriptor, which specifies the 

size of the segment, the access rights and privilege level for the, 
the segment type, and the location of the first byte of the 
segment in the linear address space (called the base address of 
the segment).” 



46 

Descriptor Description 
•  Base (32 bits) - linear address where the segment 

starts 
•  Limit (20 bits) - Size of segment (either in bytes or 

4kb blocks). End address of segment = base + limit. 
•  G (Granularity) flag - if 0, interpret limit as size in 

bytes. If 1, interpret as size in 4kb blocks. 
•  D/B - Default operation size flag. 0 = 16 bit default, 1 

= 32 bit default. This is what actually controls 
whether an overloaded opcode is interpreted as 
dealing with 16 or 32 bit register/memory sizes 

•  DPL (Descriptor Privilege Level - 2 bits) - Hmm…
another interesting field which can range from 0 to 3 
“with 0 being the most privileged level”. Push that 
onto your mental stack with the RPL. 



47 

Segmentation and Opcodes 

•  We can now dig into the simplification I told you in the 
intro class time about operands being treated as 32 bits 
just because you’re in protected mode. 

•  Instead the processor (using the D/B bit in segment 
descriptors) interprets instructions as referring to address 
and operand sizes which are the same as the type of code 
or data segment you’re currently using. So if CS points to 
a 32 bit segment it uses 32 bit forms, and if it points at a 
16 bit segment 16 bit forms.  

•  A normal OS like Win/Mac/Linux is going to be using 32 
bit segments for all normal code. 

•  But what I said was good enough for before insofar as real 
mode doesn’t have the ability to use 32 bit segments, and 
therefore being in protected mode is a prereq to using 32 
bit instructions. 



48 

Descriptor Description 2 

•  L Flag - 64 bit segment - ignore 
•  S (System) Flag - 0 for System segment. 1 for Code 

or Data segment. 
•  Type (4 bits) - Whether a segment is code or data, 

what the permissions are, whether it’s been 
accessed, and some other stuff. See next slide 

•  P (Present) Flag - 0 for not present. 1 for present. “If 
this flag is clear, the processor generates a segment-
not-present exception (#NP) when a segment 
selector that points to the segment descriptor is 
loaded into a segment register.”  



49 

Code And Data Segment 
Types 



50 

System Segment Types 



51 

Lab: 
WinDbg & the !descriptor plugin 

•  Found a WinDbg plugin for printing out 
IDT/GDT/LDT entries here 
– http://www.codeguru.com/cpp/w-p/system/

devicedriverdevelopment/article.php/
c8035/ 

•  Made modifications relevant for the 
class such as printing out segment 
types, dumping entire table 

•  First we need to get cozy with WinDbg 



Configuring VMWare for kernel debugging 
(tested on VMWare Server 1.x (Windows & Linux), & ESX & vSphere) 

(for ESX/vSphere don’t put the \\.\pipe\ in front of names) 
Debuggee 
*Add virtual serial port 
*Use named pipe 
 - Windows name: \\.\pipe\whatever 
 - Linux name: /tmp/whatever 
* This end is a server 
(VM Debugger) Other end is a virtual machine 
(Host Debugger) Other end is an application 

52 

VM Debugger 
*Add virtual serial port 
*Use named pipe 
 - Windows name: \\.\pipe\whatever 
 - Linux name: /tmp/whatever 
* This end is a client 
* Other end is a virtual machine 

Host Debugger (Windows only) 
*In WinDbg on the host when you’ve 

selected kernel debug 
*Under the COM tab 
 - Port: \\.\pipe\whatever 
 - Click the “pipe” checkbox 

This slide is for if you want to 
test this with your own VMs 



Connecting Debugger 

53 



Connecting Debugger 2 

54 

\\.\pipe\whatever 



55 

Mouse over to see 
description of which 
type of window it 
opens up 



56 



57 



58 



59 



Getting kernel debug symbols 

60 

You can also download symbols for offline 
debugging, in which case you’d just put 
put the folder you installed them into. 
Also if you’re working on your own code, 
you can specify the folder where you have 
the .pdb files. 



Stop debugging 

Step into Step over Step out 

If “Source mode 
on” is clicked, 

when you step, it 
will step one 

source line at a 
time (assuming 

you have source) 

If “Source mode 
off” is clicked, 
when you step, 
it will step one 
asm instruction 

at a time 

Restart debugging 

Continue Set breakpoint 
wherever the 

cursor is currently 



WinDbg breakpoints 

•  bp <address> : Set breakpoint 
–  Address can be number or human readable input 

like “main” or “Example1:main” 
–  This will be a software (int 3) breakpoint 

•  bl : Breakpoints list 
•  bd <bp ID> : Breakpoint disable 

–  <bp ID> as given by first column of bl 
•  be <bp ID> : Breakpoint enable 

–  <bp ID> as given by first column of bl 
•  bc <bp ID> : Breakpoint clear (delete)  



WinDbg misc of note 

•  WinDbg lists the upper 32 bits of the 
GDTR as “gdtr” but the lower 16 bits as 
“gdtl” 

•  Load the plugin in windbg with       
".load protmode" 

•  type "!descriptor" to list the possible 
commands (also supports tab 
completion) 

63 



64 

Stop! 
•  We’ve actually overshot what we need to know to discuss the 

protection rings. They are the interaction between the 
Requested Privilege Level (RPL), Descriptor Privilege Level 
(DPL), and introducing the Current Privilege Level (CPL) 

•  “The CPL is defined as the protection level of the currently 
executing code segment.” (Sect 2.1.1) 

•  Privilege rings are automatically enforced by the hardware on 
certain operations.  
–  E.g. if attempting to jump/call/return from one segment into a 

different segment, the hardware will check the DPL of the target 
segment and allow the access only if CPL <= DPL 

–  E.g. if attempting to use many privileged assembly instructions, the 
hardware will only allow it if CPL == 0 

•  Kernel is responsible for setting up userspace in the first place 
and making sure that when it allows userspace programs to run, 
their CPL == 3. 



You wish 

•  You may be saying, “Oh, well, if the 
CPL is just the lower two bits of CS, I’ll 
just go ahead and load a segment 
selector which is the same as the 
current one, but with those bits set to 0, 
and I will be ring 0!” 

•  Intel says “Yeah right” - “The MOV 
instruction cannot be used to load the CS register. 
Attempting to do so results in an invalid opcode 
exception” 65 



66 

Call Gates 
("I'm down with Bill Gates, I call him Money for short. I phone him up at home, and I make him do my tech support!" 

- Weird Al, "It's All About the Pentiums") 

• Call gates are basically a way to transfer control from one segment to 
another segment (possibly at a different privilege ring, possible at a 
different size in terms of whether it's 16/32 bits.) 
• But the key point is you don't want people to be able to call to anywhere 
in the other segment, you want the interface to be controlled and well-
understood. So calling to a call gate brings code to a specific place 
which the kernel has set up. 



Call Gates 2 
•  The CALL, RET, and JMP x86 instructions have a 

special form for when they are doing inter-segment 
control flow transfer (normal call, ret, jmps are 
intra-segment for reasons which will become clear 
shortly.) 

•  Each of them takes a single far pointer as an 
argument (though in ret's case, it's popping it off 
the stack). 

•  A call gate expects as many parameters as 
specified by the "Param Count" field on the 
previous slide (max of 16 due to 4 bit field). 
Parameters are just pushed onto the stack right to 
left like a normal cdecl/stdcall calling convention. 

•  Return value from the far call is returned in eax. 
•  __asm{call fword ptr 0x08:0x12345678}; 

67 



68 

Surprise! No one uses segmentation 
directly for memory protection! :D 

•  On most systems, segmentation is not 
providing the primary RWX type permissions, 
they instead rely on paging protections. 

Vol.3a, Sect. 
3.2.1 



Why did we even bother learning it? 

•  Because it subtly influences aspects of the system. 
–  We’ve already seen that it’s the basis for the notions of 

userspace/kernel separation (which includes the 
enforcement of limiting access to privileged instructions), but 
it also influences most of the topics we will be covering in 
this class 

•  On 32 bit systems, the GDT is required, and at least 
flat segmentation must be set up. 
–  Segmentation support mostly removed in x86-64, but it’s so 

embedded in the architecture, and chip makers so prize 
backward compatibility. that it will continue to influence 
design for a while. 

•  It’s just good to understand how stuff works as 
accurately as possible :) 

69 



70 

Who uses segmentation for 
memory protection? 

•  Paravirtualized Xen uses it to protect the hypervisor 
from the OS. Jives with the notion of putting the OS in 
ring 2 per the picture we saw early on. (http://
www.cs.uiuc.edu/class/sp06/cs523/lectures/05/523-5-xen.pdf) 

•  Google Native Client (NaCl)!? 
–  Thanks to Murad Khan for pointing this out 
–  System for sandboxing browser plugins, which aims to allow the 

plugin to be custom compiled to x86 code, and then it only 
executes x86 instructions natively if they meet criteria which 
ensures NaCl can analyze them to ensure safety 

–  Segmentation is used to provide a “data sandbox” which the 
code cannot access outside of 

–  Combination of a lot of other academic work, but segmentation 
is basically just an optimization to prevent having to intercept 
reads/writes looking for things targeted to the outside of the 
sandbox (can just check at the analysis stage) 

–  http://nativeclient.googlecode.com/svn/data/docs_tarball/nacl/googleclient/native_client/
documentation/nacl_paper.pdf 



Misc usage of segments 
•  On Windows as a RE you will see access to the FS 

segment register frequently (e.g. mov eax, fs:[0]). 
Windows manages the FS register to have it always 
pointing at the base of the Thread Environment Block 
(TEB) which is used to store some per-thread 
information. 

•  In the Intro x86 class I noticed in a Linux/GCC 
example which had stack cookies enabled, it seemed 
to be pulling the random cookie from some structure 
based at GS. But I don’t know what it was, so if 
anyone wants to figure that out and LMK, I’d be 
much obliged. 71 



72 

Why isn’t segmentation widely used? 
•  Answer: I dunno. Ideas? LMK 
•  Speculation: It’s one of the standard security tradeoffs, security 

vs. performance. How much overhead does it add? Probably 
not much, but since many OS design decisions were made in 
the unfortunate time after COTS overtook MLS (Multi-level 
secure) OSes, the designers probably sided with performance. 

•  Speculation 2: With only 6 segment registers, you can’t have a 
1:1 mapping of segments to binary memory sections, because 
some binaries have > 6 sections, so then the questions 
becomes, what are the most appropriate places to apply 
segmentation (other than code vs data), how frequently do you 
want to switch, or what if there’s no compiler support? 

•  Speculation 3: Wikipedia says segmentation “make[s] 
programming and compilers design difficult because the use of 
near and far pointers affect performance” Citation needed ;), 
but I can see how it would make compilers more difficult. How 
does the compiler know what your OS is doing with 
segmentation? 

•  Speculation 4: All of the above. Whatever it is, support for 
segmentation was mostly removed in x86-64 



73 

Misc: NoPill & ScoopyNG, 
using LDT/GDT to detect that 

we’re in a VM 
•  NoPill 

–  http://www.offensivecomputing.net/files/active/0/vm.pdf 
–  Redpill equivalent which profiles the LDTR rather 

than IDTR (talked about later) 
–  Done because RedPill signature can have false 

positives outside of VMs. 
•  ScoopyNG 

–  Does 7 checks including LDT/GDT as well as 
other things like the VMWare I/O channel 

–  http://www.trapkit.de/research/vmm/scoopyng/index.html 

–  Source code is in the zip file 



74 

Misc Instructions Picked Up 
Along The Way 

•  CPUID – Identify CPU features 
•  PUSHFD/POPFD – Push/Pop EFLAGS 
•  SGDT/LGDT – Store/Load GDTR 
•  SLDT/LLDT – Store/Load LDTR 


