Advanced x86:

BIOS and System Management Mode Internals PCI {Option/Expansion} ROMs

Xeno Kovah && Corey Kallenberg LegbaCore, LLC

All materials are licensed under a Creative Commons "Share Alike" license. http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work

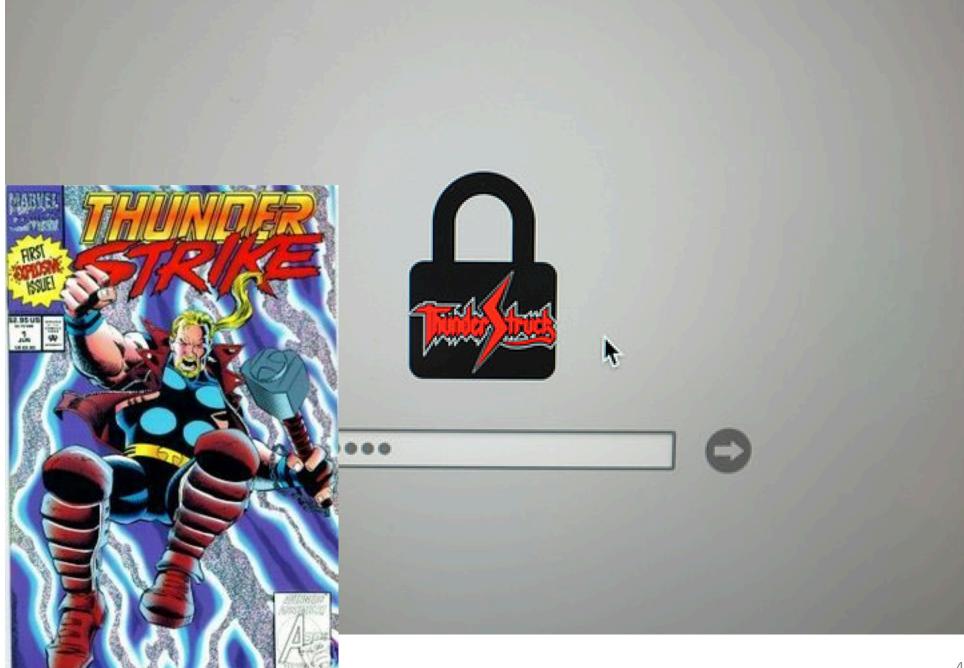
to Remix - to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

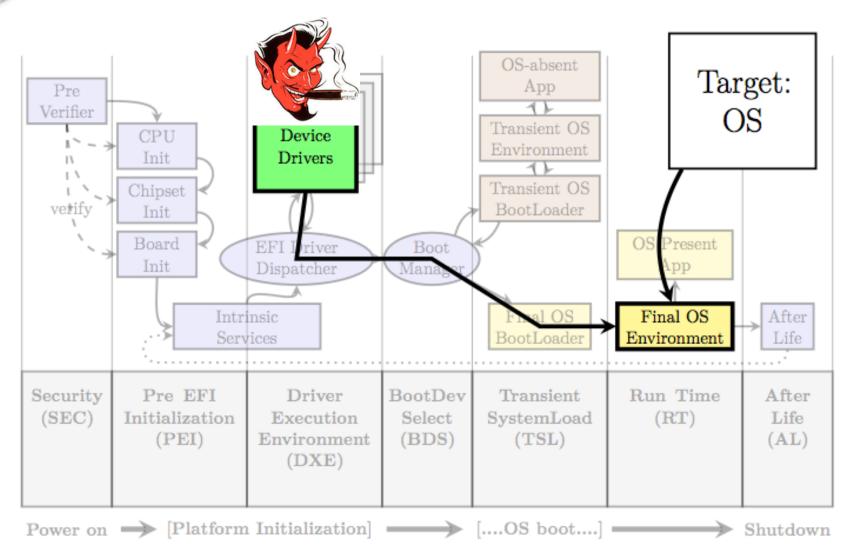
Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.

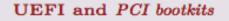
Attribution condition: You must indicate that derivative work


"Is derived from John Butterworth & Xeno Kovah's 'Advanced Intel x86: BIOS and SMM' class posted at http://opensecuritytraining.info/IntroBIOS.html" 2

PERSISTENCE PCI DEVICE EXPANSION ROMS

- Hardware-specific
- Graphics cards in iMacs have them
 - MacBook Pros too
 - My old test MacBook no dice
 - VMware's ethernet interfaces do hurr (good for testing)
- Can write to them from the OS
 - Thanks, iMacGraphicsFWUpdate.pkg!
 - Probably with flashrom
- Pretty awesome. 7/10.




https://trmm.net/Thunderstrike_31c3

Thunderstrike 2: Sith Strike

Trammell Hudson – Two Sigma Xeno Kovah, Corey Kallenberg – LebgaCore

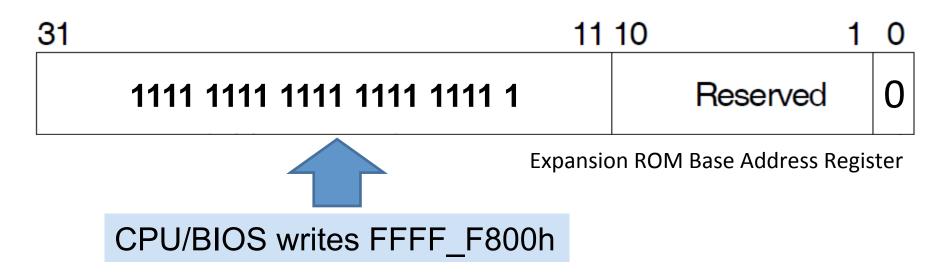
PCI/PCIe Expansion ROMs (XROMs) aka Option ROMs (OROMs)

- A PCI/PCIe Expansion ROM is *x86 native executable code* located on a PCI device
 - Can technically have multiple architectures' native code on it, so that the device can load just as well on a PPC device as an x86 one.
- Not every device will have one
 - Graphics cards, network cards will likely have one
 - A device can have multiple XROMs (for multiple architectures)
- Benign or otherwise this code gets executed by the CPU/ BIOS during the boot process
- They are handled the same on PCI Express as they are in PCI
- They are configured via a separate BAR called the Expansion ROM Base Address Register

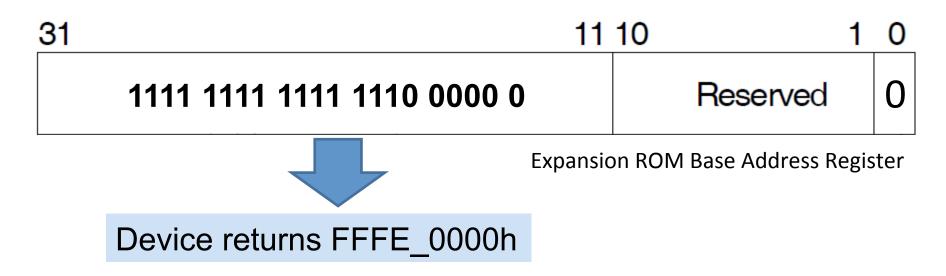
Expansion ROMs

31	16	15	0	_								
Devle	Device ID Vendor ID											
Sta	Status Command											
	Class Code Revision ID											
BIST	Header Type	Latency Timer	Cache Llne Slze	0Ch								
				14h								
Base Address Registers												
				20h								
				24h								
	Cardbus C	IS Pointer		28h								
Subsys	tem ID	Subsystem	Vendor ID	2Ch								
E	Expansion RC	M Base Addr	ess	30h								
Reserved Capabilities Pointer												
	Reserved											
Max_Lat	MIn_Gnt	Interrupt Pln	Interrupt Line	3Ch								

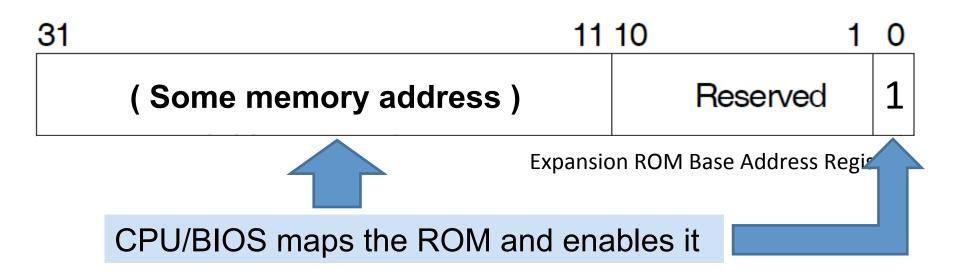
- XROMs have their own BAR called the Expansion ROM Base Address Register
 - On general type PCI devices it's located at offset 30h
 - On bridge type devices it's at 38h
- BIOS initializes the XROM BAR like the other BARs, but hands off execution control to the code it points to
- XROMs are copied to memory before being executed
 - On legacy systems they are copied to C0000 to DFFFFh range
- The XROM BAR operates similarly to the other BARs but the interpretation of the field's bits is slightly different


Expansion ROM Base Address Register

31		11 10		1	0
	Expansion ROM Base Address (Upper 21 bits)		Reserved		
	Expansion ROM Enable				


- The LSB determines whether accesses to the Expansion ROM are permitted. When asserted to 1, they are permitted
- Even when a device has an Expansion ROM, its BAR may still be 0 (meaning access to it is not permitted)
- Like the PCI BARs, the Expansion ROM BAR is also R/W

Command Register and Address Space Access


31	16	15	0															
Devie	Device ID Vendor ID 0					15		10	9	8	7	6	5	4	3	2	1	0
Sta	Status Command					F	Reserved										1	
	Class Code	08h Interrupt Disable A A A A A A A A A A A A A A A A																
BIST	BIST Header Latency Cache Line Type Timer Size					Fast Back-to-Back Enable 0Ch SERR# Enable Reserved												
			10h	Parity	/ Error Res	sponse —												
				14h	Memo	ory Write a	oop nd Invalidate	e En	able									
	Base Addres	s Registers		18h	-	-												
				1Ch		• •												
				20h						_								
				24h			pansio								ly			
	Cardbus C	IS Pointer		respond to accesses if the														
Subsys	tem ID	Subsystem	Vendor ID	2Ch	Expansion ROM Enable bit <u>and</u>													
E	Expansion RO	M Base Addr	ess 1	the memory space bit in the														
	Reserved Capabilities Pointer					^{34h} Command Register are both set												
Reserved																		
Max_Lat	MIn_Gnt	Interrupt Pln	Interrupt Line	3Ch														

- To determine whether the device has implemented an Expansion ROM base:
- All 1's are written to the top 21 bits (31:11) of the Expansion ROM BAR
- If the device returns anything other than 0, then it has implemented an Expansion ROM

- The return address indicates both the size of the ROM and the memory alignment (mask) required by the ROM:
- Per the above example:
- Size = ~FFFE_0000 +1 = 2_0000h bytes
- ROM must be mapped to a 128KB-aligned memory address
 - So addresses like XXX00000, XXX20000, XXX40000, etc

- Next the CPU/BIOS maps the ROM to an unused portion of memory
- Then it sets the enable bit so that the ROM is now accessible at the address defined by the BIOS

Offset	Length	Value	Description
0h	1	55h	ROM Signature byte 1
1h	1	AAh	ROM Signature byte 2
2h	1	xx	Initialization Size - size of the code in units of 512 bytes
3h	3	xx	Entry point for INIT function. POST does a FAR CALL to this location.
6h-17h	12h	хх	Reserved (application unique data)
18h-19h	2	хх	Pointer to PCI Data Structure
	•		

CPU/BIOS checks memory for Option ROM structure

- If anything other than the "AA55" signature is present, there is actually no Option ROM provided by the device, despite the fact that it returns a mask as if there were
 - I have some ice cream. Want a lick? Psych!
- There may still be an option ROM, however, some companies implement them in non-standard ways

CPU/BIOS Expansion ROM Discovery

- A PCI device can share a decoder between the Expansion ROM BAR and other BARs
- For example:
- Some vendors mirror their Expansion ROMs at BAR[n] or at an offset from BAR[n]
 - NVidia sometimes puts them at BAR[0] + 30_000h (per the developers of Flashrom)
 - <u>http://flashrom.org/Flashrom</u>
- It is possible that there simply is no Expansion ROM present on the device
 - Could be located in a compressed module in the BIOS binary

Expansion ROM Discovery: User Example (Same as BIOS)

🔣 PCI									
	🛗 🚰 👬 (byte wor 8bit 16b	al 225al	PCI		l	Refresh		
Bus 01, Device	e 00, Function 00 - n	Vidia Corporatio			🖮 🚰 🏔	byte wor 8bit 16b		2	
48	03020100	07060504	0B0A090						````
000	06EB10DE	001 0007	030000/	Bus 01, Devic	e 00, Function 00 - n	Vidia Corporatio	n VGA Controller	(PCIE) 🔹	Info Tex
010	F5000000	E00000C	000000	8	03020100	07060504	0B0A0908	0F0E0D0C	Device/Vend
020	00000000	0000DF01	0000000		06EB10DE	00100007	030000A1	00000010	Revision ID
030	FFFFF800	00000060	000000	000	F5000000	E000000C	00000000	F2000004	Class Code Cacheline Si;
040	02331028	0000000	0000000	010					Latency Time
050	0000001	00000001	0023D6		00000000	0000DF01	00000000	02331028	Interrupt Pin
060	00036801	0000008	0080780	030	FFFE0000	00000060	00000000	00000110	Interrupt Line
070	00000000	00000000	000200:	040	02331028	00000000	00000000	00000000	BAR2
080	00002910	00002D02	1101004	050	00000001	00000001	0023D6CE	00000000	BAR3 BAR4
090	00000000	00000000	000000	060	00036801	0000008	00807805	00000000	BAR5
				070	00000000	00000000	00020010	012C84A0	BAR6
				080	00002910	00002D02	1011004B	00000000	Expansion R(Subsystem ID
				090	0000000	00000000	00000000	00000010	

- This example pertains to the nVidia VGA card on the E6400 laptop
- Verify that the memory-enable space bit 1 in the command register (offset 04h) is asserted
- Writing FFFF_F800h to offset 30h returns FFFE_0000h indicating that an Expansion ROM [might be] present
 - Bit 17 is the LSB, which indicates a 128KB ROM
 - Size = ~FFFE_0000 + 1 = 2_0000h bytes

Expansion ROM Discovery: User Example (Same as BIOS)

📕 Mem	iory											
	bin]			byte 8bit	word dw 16 bit 32	Lad d				Refresh		
			<u> </u>		16bit 32	<u></u>	🌉 PCI					
A	ddress =	000000	000010	0000				i 🚰 🏟	byte wor 8bit 16b		2	
0	0100	0302	0504	070	0908	OBC						
00	DE18	CABF	0000	0000	. 312	000	Bus 01, Device ()0, Function 00 - r	nVidia Corporatio	n VGA Controller	(PCIE) 🔻	Info Text
10	0000	0000	0000	0000	C000	000	8	03020100	07060504	0B0A0908	0F0E0D0C	Device/Vend
20	0001	0000	0000	0000	C000	000	000	06EB10DE	00100007	030000A1	00000010	Revision ID Class Code
30	4000	0001	0000	0000	0002	000	0.3	F5000000	E000000C	00000000	F2000004	Cacheline Siz
40	0000	000E	0000	0000	0000	000	020	00000000	0000DF01	00000000	02331028	Latency Time Interrupt Pin
50	0002	0000	0000	0000	0000	001	030	00100001	0000060	00000000	00000110	Interrupt Line
60	0000	1FF0	0000	0000	0001	000	040	02331028	00000000	00000000	00000000	BAR1 BAR2
70	0000	2000	0000	0000	0000	002	050	0000001	0000001	0023D6CE	00000000	BAR3
80	0002	0000	0000	0000	0000	202	060	00036801	80000008	00807805	0000000	BAR4 BAR5
90	0000	1FE0	0000	0000	0001	000	070	00000000	00000000	00020010	012C84A0	BAR6
							080	00002910	00002D02	1011004B	0000000	Expansion R0 Subsystem ID
							090	00000000	00000000	00000000	0000010	2.200,000,000

- We (or the BIOS) should be able to choose a memory address for the ROM to be mapped to
- Address must meet alignment requirements
- Address must provide enough room for the XROM
- Must enable the XROM decoding (assert bit 0, enable)

Expansion ROM Discovery: User Example (Same as BIOS)

	Memor	у											
		I 🚈			byte 8bit	word dw 16 bit 32	List d				Refresh		
						16bit 32		🌉 PCI					
	Add	iress = (000000	000010	0000					byte wor 8bit 16b		2	
	0	0100	0302	0504	0706	0908	OBC						1
	00	DE18	CABF	0000	0000	0012	000	Bus 01, Device (00, Function 00 - r	nVidia Corporatio	n VGA Controller	(PCIE) 🔹	Info Text
	10	0000	0000	0000	0000	C000	000	8	03020100	07060504	0B0A0908	0F0E0D0C	Device/Vend
	20	0001	0000	0000	0000	C000	000	000	06EB10DE	00100007	030000A1	00000010	Revision ID Class Code
	30	4000	0001	0000	0000	0002	000	010	F5000000	E000000C	00000000	F2000004	Cacheline Siz
<u> </u>	40	0000	000E	0000	0000	0000	000	020	00000000	0000DF01	00000000	02331028	Latency Time
1	50	0002	0000	0000	0000	0000	001	030	00100001	0000060	00000000	00000110	Interrupt Line
	60 70	0000	1FF0	0000	0000	0001 0000	000	040	02331028	00000000	00000000	00000000	BAR1 BAR2
	80	0000 0002	2000 0000	0000	0000	0000	002 202	050	0000001	0000001	0023D6CE	00000000	BAR3
	90	0002	1FE0	0000	0000	0001	000	060	00036801	0000008	00807805	00000000	BAR4 BAR5
	30	0000	11-20	0000	0000	0001	000	070	00000000	0000000	00020010	012C84A0	BAR6
								080	00002910	00002D02	1011004B	00000000	Expansion R0 Subsystem ID
								090	00000000	00000000	00000000	0000010	

- If there is anything other than the "AA55" XROM signature, then there is actually no option ROM present
- As it turns out, in this case, there is no option ROM located on the device
- This option ROM is located on the BIOS flash as a compressed module

Expansion ROM Hacking

- Hacking an Expansion ROM typically requires reflashing the firmware on the device
 - Often the "RO" in "ROM" is a misnomer
 - Although in the case we just saw, modifying the BIOS itself could permit an attacker to insert a malicious XROM
- If a vendor offers a utility to update the flash then you know the flash is writeable
- Good reference on XROM hacking:
- <u>http://resources.infosecinstitute.com/pci-expansion-rom/</u>
- It's important for Option ROMs to be measured (measured boot) before being executed

Secure Boot

- Systems that support UEFI/Windows 8 Secure Boot require XROMs to be signed before it will execute them
 - Assuming you didn't turn off SecureBoot
- Apple systems don't support SecureBoot, therefore what worked in 2012 still works today
 - The fact that systems load XROMs off external peripherals like the Thunderbolt Ethernet adapter make it just that much easier to attack Macs this way

References

- <u>https://sites.google.com/site/pinczakko/building-a-kernel-in-pci-expansion-rom</u> (Darmawan Salihun)
- <u>http://www.blackhat.com/presentations/bh-dc-07/Heasman/</u> <u>Paper/bh-dc-07-Heasman-WP.pdf</u> (John Heasman)
- <u>http://pacsec.jp/psj13/psj2013-day2_Pierre_pacsec-uefi-pci.pdf</u> (Pierre Chifflier)
- <u>http://ho.ax/downloads/</u>
 <u>De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf</u> (Snare)
- <u>https://trmm.net/Thunderstrike</u> (Trammel Hudson)
- <u>http://legbacore.com/Research_files/ts2-blackhat.pdf</u> (Trammel Hudson, Xeno Kovah, Corey Kallenberg)