
Advanced	 x86:	
BIOS	 and	 System	 Management	 Mode	 Internals	

PCI	 {Op(on/Expansion}	 ROMs	

Xeno	 Kovah	 &&	 Corey	 Kallenberg	
LegbaCore,	 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	 condiEon:	 You	 must	 indicate	 that	 derivaEve	 work	
"Is	 derived	 from	 John	 BuBerworth	 &	 Xeno	 Kovah’s	 ’Advanced	 Intel	 x86:	 BIOS	 and	 SMM’	 class	 posted	 at	 hBp://opensecuritytraining.info/IntroBIOS.html”	

3	

4	

hBps://trmm.net/Thunderstrike_31c3	

Pierre	 Chifflier,	 UEFI	 and	 PCI	 Bootkits,	 PacSec	 2013	 [34]	

6	

Thunderstrike 2:�
Sith Strike	

	
Trammell	 Hudson	 –	 Two	 Sigma	

Xeno	 Kovah,	 Corey	 Kallenberg	 –	 LebgaCore	
	

TWO	 SIGMA	

PCI/PCIe Expansion ROMs (XROMs)
aka Option ROMs (OROMs)

•  A PCI/PCIe Expansion ROM is x86 native executable code
located on a PCI device
–  Can technically have multiple architectures’ native code on it, so that the

device can load just as well on a PPC device as an x86 one.

•  Not every device will have one
–  Graphics cards, network cards will likely have one
–  A device can have multiple XROMs (for multiple architectures)

•  Benign or otherwise this code gets executed by the CPU/
BIOS during the boot process

•  They are handled the same on PCI Express as they are in
PCI

•  They are configured via a separate BAR called the Expansion
ROM Base Address Register

7	

Expansion ROMs
•  XROMs have their own BAR

called the Expansion ROM
Base Address Register
–  On general type PCI devices

it’s located at offset 30h
–  On bridge type devices it’s at

38h
•  BIOS initializes the XROM

BAR like the other BARs, but
hands off execution control to
the code it points to

•  XROMs are copied to memory
before being executed
–  On legacy systems they are

copied to C0000 to DFFFFh
range

•  The XROM BAR operates
similarly to the other BARs but
the interpretation of the field’s
bits is slightly different

8	

Expansion ROM Base Address Register

•  The LSB determines whether accesses to the Expansion
ROM are permitted. When asserted to 1, they are permitted

•  Even when a device has an Expansion ROM, its BAR may still
be 0 (meaning access to it is not permitted)

•  Like the PCI BARs, the Expansion ROM BAR is also R/W

9	

Command Register and Address Space Access

•  An expansion ROM will only
respond to accesses if the
Expansion ROM Enable bit and
the memory space bit in the
Command Register are both set

1

10	

1	

How CPU/BIOS Discovers XROMs

•  To determine whether the device has implemented an
Expansion ROM base:

•  All 1’s are written to the top 21 bits (31:11) of the Expansion
ROM BAR

•  If the device returns anything other than 0, then it has
implemented an Expansion ROM

0	

CPU/BIOS writes FFFF_F800h

1111 1111 1111 1111 1111 1

Expansion	 ROM	 Base	 Address	 Register	

11	

How CPU/BIOS Discovers XROMs

•  The return address indicates both the size of the ROM and
the memory alignment (mask) required by the ROM:

•  Per the above example:
•  Size = ~FFFE_0000 +1 = 2_0000h bytes
•  ROM must be mapped to a 128KB-aligned memory address

–  So addresses like XXX00000, XXX20000, XXX40000, etc

0	

Device returns FFFE_0000h

1111 1111 1111 1110 0000 0

Expansion	 ROM	 Base	 Address	 Register	

12	

How CPU/BIOS Discovers XROMs

•  Next the CPU/BIOS maps the ROM to an unused portion of
memory

•  Then it sets the enable bit so that the ROM is now accessible
at the address defined by the BIOS

1	

CPU/BIOS maps the ROM and enables it

(Some memory address)

Expansion	 ROM	 Base	 Address	 Register	

13	

How CPU/BIOS Discovers XROMs

•  If anything other than the “AA55” signature is present, there is
actually no Option ROM provided by the device, despite the
fact that it returns a mask as if there were
–  I have some ice cream. Want a lick? Psych!

•  There may still be an option ROM, however, some companies
implement them in non-standard ways

CPU/BIOS checks memory for Option ROM structure

PCI	 Express	 Revision	 3.0	 14	

CPU/BIOS Expansion ROM Discovery
•  A PCI device can share a decoder between the Expansion

ROM BAR and other BARs
•  For example:
•  Some vendors mirror their Expansion ROMs at BAR[n] or at

an offset from BAR[n]
–  NVidia sometimes puts them at BAR[0] + 30_0000h (per the

developers of Flashrom)
–  http://flashrom.org/Flashrom

•  It is possible that there simply is no Expansion ROM present
on the device
–  Could be located in a compressed module in the BIOS binary

15	

Expansion ROM Discovery:
User Example (Same as BIOS)

•  This example pertains to the nVidia VGA card on the E6400 laptop
•  Verify that the memory-enable space bit 1 in the command register

(offset 04h) is asserted
•  Writing FFFF_F800h to offset 30h returns FFFE_0000h indicating

that an Expansion ROM [might be] present
–  Bit 17 is the LSB, which indicates a 128KB ROM
–  Size = ~FFFE_0000 + 1 = 2_0000h bytes

16	

Expansion ROM Discovery:
User Example (Same as BIOS)

•  We (or the BIOS) should be able to choose a memory
address for the ROM to be mapped to

•  Address must meet alignment requirements
•  Address must provide enough room for the XROM
•  Must enable the XROM decoding (assert bit 0, enable)

00100001	

17	

Expansion ROM Discovery:
User Example (Same as BIOS)

•  If there is anything other than the “AA55” XROM signature,
then there is actually no option ROM present

•  As it turns out, in this case, there is no option ROM located on
the device

•  This option ROM is located on the BIOS flash as a
compressed module

00100001	

18	

Expansion ROM Hacking

•  Hacking an Expansion ROM typically requires reflashing the
firmware on the device
–  Often the “RO” in “ROM” is a misnomer
–  Although in the case we just saw, modifying the BIOS itself could permit

an attacker to insert a malicious XROM

•  If a vendor offers a utility to update the flash then you know
the flash is writeable

•  Good reference on XROM hacking:
•  http://resources.infosecinstitute.com/pci-expansion-rom/
•  It’s important for Option ROMs to be measured (measured

boot) before being executed

19	

Secure	 Boot	

•  Systems	 that	 support	 UEFI/Windows	 8	 Secure	
Boot	 require	 XROMs	 to	 be	 signed	 before	 it	 will	
execute	 them	
– Assuming	 you	 didn’t	 turn	 off	 SecureBoot	

•  Apple	 systems	 don’t	 support	 SecureBoot,	
therefore	 what	 worked	 in	 2012	 sEll	 works	 today	
–  The	 fact	 that	 systems	 load	 XROMs	 off	 external	
peripherals	 like	 the	 Thunderbolt	 Ethernet	 adapter	
make	 it	 just	 that	 much	 easier	 to	 aBack	 Macs	 this	 way	

20	

References	
•  https://sites.google.com/site/pinczakko/building-a-kernel-in-

pci-expansion-rom (Darmawan Salihun)
•  http://www.blackhat.com/presentations/bh-dc-07/Heasman/

Paper/bh-dc-07-Heasman-WP.pdf (John Heasman)
•  http://pacsec.jp/psj13/psj2013-day2_Pierre_pacsec-uefi-

pci.pdf (Pierre Chifflier)
•  http://ho.ax/downloads/

De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf (Snare)
•  https://trmm.net/Thunderstrike (Trammel Hudson)
•  http://legbacore.com/Research_files/ts2-blackhat.pdf

(Trammel Hudson, Xeno Kovah, Corey Kallenberg)

21	

