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BIOS Flash Overview 
•  Everything we have talked about so far, although harmful 

to a system, isn’t persistent unless you can write to the 
BIOS 

•  But one of the goals an attacker has in establishing a 
presence in the system is persistence 

•  To achieve persistence, the attacker will have to figure 
out a way to write to the BIOS flash so that upon every 
reboot, his presence is still there 
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Results	  of	  Copernicus	  checks	  
•  We’ve used Copernicus to scan all of MITRE, and 

some other organizations. 
•  Originally (in 2013) the data said about 35% of 

systems were vulnerable. 
•  Then we found more problems and it went up to 55% 
•  Then people patched and it went down to 35% 
•  Then we found more problems and it went up to 60% 
•  Then we found more problems and it went up to 85% 
•  And if the organizations had never patched, and we 

looked at our first data with our last knowledge? 
•  99.95% vulnerable	  
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BIOS Flash Location 
•  BIOS can reside in one of 3 

locations: 
1.  Firmware Hub (FWH)  

–  Older technology and mostly 
out of scope for this class 

2.  SPI Flash 
–  Most likely location 

3.  PCI  
–  intended for debugging or 

recovering from a corrupted 
BIOS (not supported 
anymore on newer hardware) 
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Boot BIOS Flash Location 
•  The boot destination is 

decided by the 
configuration of the 
following pins on the ICH/
PCH* 

•  Pins are sampled at power-
up to determine location of 
BIOS 

•  Intended for static 
configuration 

•  PCI boot is intended only 
for debugging or recovering 
from corrupt BIOS (so not 
necessarily static) 

•  But since these are 
hardware pins, it’s worth 
checking if PCI is set as the 
boot location, because you 
might have a physical 
hardware implant! 

*	  References	  to	  ICH/PCH	  mean	  applicable	  to	  both	  legacy	  and	  modern	  chipsets	   6	  



Example: Find BIOS Boot Destination 
•  To programmatically find 

where your BIOS is 
configured to boot from, 
you can also view bits 
11:10 in the General 
Control and Status 
Register (GCS) 

•  Located at memory-
mapped offsets 
3410-3413h in the 
Chipset Configuration 
Registers 

•  Chipset Configuration 
Registers are mapped 
starting at the address 
held by RCBA…you 
know, RCRB? :) 

 Verify	  GCS	  locaEon	  on	  your	  datasheet	  if	  not	  using	  the	  class	  E6400.	  

01b	  	  SPI	  (typo	  in	  datasheet)	  
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Reminder: RCBA/RCRB 

•  The Root Complex Register Block (RCRB) decode range is 
located in the Root Complex Base Address (RCBA) register 
located in the LPC (D31:F0, offset F0-F3h) 

•  The root complex is PCI-Express related. It connects the 
processor and memory to the PCI Express devices. 
–  If you want to know more about the inner workings of PCI Express, 

there are a number of good sources, such as (Darmawan): 
–  http://resources.infosecinstitute.com/system-address-map-

initialization-x86x64-architecture-part-2-pci-express-based-systems/ 

You	  know	  the	  
drill!	  
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Example: Find BIOS Boot Location 
•  Locate RCRB: 
•  Bit 0 is just an enable 

bit (the nibble this bit is 
in is still part of the 
address, but change it 
to 0) 

•  Here the RCRB begins 
at FED1_8000h 

•  The GCS register is 
located at in the chipset 
configuration registers. 

•  At RCRB + 3410h = 
FED1_B410h 

 The	  root	  complex	  base	  address	  will	  differ	  on	  different	  systems.	   9	  



Example: Find BIOS Boot Location 

•  GCS at FED1_B410h 
yields the following 
value on our lab 
system: 

•  00C0_0440h 
•  Bits 11:10 are 01b 

which indicates that this 
BIOS boots from SPI 

•  But how can we trust 
what this says?  We’re 
not actually sampling 
the Controller’s pins in 
this register 

 

Bits 11:10 
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Example: Change BIOS Access Destination 
•  Notice these bits are R/W? 
•  You can change the 

destination for BIOS 
accesses  

•  Likely this is to help the 
system recover from a 
corrupted BIOS 

•  But it could be certainly 
misused as well  

•  Note just to be clear: The 
bits in GCS alter accesses 
to the BIOS *only* after the 
BIOS has begun booting 
–  Chipset Configuration 

registers must be mapped to 
memory, etc. 

•  The functional straps are 
physical pins which cannot 
be altered and decide the 
BIOS Boot Location 
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Example: Change BIOS Access Destination 

•  Bring up a memory window and go to an address which 
shows the memory-mapped BIOS (like FFFF_FF80h which 
will show us the entry vector) 

•  You should see the BIOS in memory 
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Example: Change BIOS Access Destination 

•  Modify the GCS register to 00C00C40h, bits 11:10 are 11b now which 
point the device to the LPC  

•  On our lab system the LPC has no firmware BIOS so this translates to 
reads of all 1’s (0xFF) 

•  Your personal system may differ and you may actually see valid binary 
here.   
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Example: LOCK BIOS Access Destination 

•  Intel provides a way to 
lock down the 
destination of BIOS 
accesses 

•  When bit 0 in the 
General Control and 
Status Register (GCS) 
is set, bits 11:10 
become Read-Only 

•  The BIOS should lock 
this down! 
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Example: Change BIOS Access Destination 

•  Set bits 11:10 in the GCS register back to their original 
values (01b for SPI)* 

•  Assert bit 1 in GCS, now GCS is 00C00441h 
•  Now find that bits 11:10 are fixed in place 
 *Or	  leave	  them	  poinEng	  to	  nothing,	  this	  is	  not	  permanent	  and	  nothing	  a	  reboot	  won’t	  reset	   15	  



A Word About This 

•  This only affects direct (memory) accesses to BIOS flash 
•  Programs (like Copernicus or Flashrom) that read directly 

from the BIOS flash using the SPI programming registers (for 
example) will still successfully read the BIOS binary from the 
chip 
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Firmware Hub (FWH) 

•  Provides register-based R/W 
protection for each code/data 
storage block 

•  Has hardware write-protect pins 
for the top boot block and the 
remaining code/data storage 
blocks 

•  Contains a Random Number 
Generator (RNG) 

•  More than one FWH device can 
be supported 

•  Operates at 33 MHz 
(synchronous to the PCI bus) 

•  Has a lot of pins compared to 
SPI 

Intel	  82802AB/82802AC	  Firmware	  Hub	  (FWH)	  	   17	  



Firmware Hub (FWH) 
•  Memory-mapped interface  
•  Programmable Erase, 

Read, Write commands 
•  Each block can be locked 

down to prevent Reads 
and/or Writes 

•  Firmware hubs are rare (at 
least in modern PC’s) and 
we have never seen one 

•  Sample FWH datasheet: 
•  http://download.intel.com/

design/chipsets/datashts/
29065804.pdf 

•  If you ever encounter a 
system with a firmware 
hub email me and tell me 
the make/model please Intel	  82802AB/82802AC	  Firmware	  Hub	  (FWH)	  	   18	  



Serial Peripheral Interface (SPI) 

•  SPI controller can support 1 or 2 devices for 32 MB maximum 
addressable space 

•  Lower cost alternative (per Intel datasheet) 
•  Memory-mapped programming interface offset from RCRB 

(consult your datasheet for its exactly offset) 

•  Intel’s ICH/PCH implements a SPI 
interface for the BIOS flash device 

•  Used as a replacement for the Firmware 
Hub (FWH) on LPC 

•  SPI is required in order to support the 
Management Engine (ME), Gigabit 
Ethernet (GbE), and others. 

•  Each SPI flash device can be up to 16 
MB (224 bits) Typically	  8	  pins,	  can	  be	  16	  

*Based	  on	  datasheet	  informaEon	  and	  that	  the	  Flash	  Address	  Register	  accepts	  addresses	  occupying	  bits	  24:0	  19	  



SPI Overview 

•  SPI protocol can support data rates up to 100 MHz 
–  Intel’s implementation is configurable to operate at either 20 MHz 

or 33 MHz (or 50 MHz on the newer PCI Express systems), or 
66MHz 

•  Intel abstracts most of the low-level SPI protocol from 
you 

•  SPI protocol is not a fixed standard 
–  Different chips will support different commands and so forth 

•  Intel defines a set of minimum requirements for a chip to 
support. 
–  Likely though each chip will support more than just that bare 

minimum 
•  So we’ll be covering Intel’s implementation and interface 

to SPI, not really the SPI protocol itself (they intertwine 
somewhat of course). 
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SPI Operating Modes 

•  Since I/O Controller Hub version 8, the SPI flash has 
been able to support 2 distinct operating modes: 

•  Non-Descriptor Mode (RIP, deceased ’09) 
–  IT LIVES! (On embedded Intel Atom devices like MinnowBoard!) 
–  In ICH7 this is the only supported operating mode 

•  Descriptor Mode 
–  Since ICH8 (so ICH8, ICH9, ICH10, and PCH) 

•  For systems that have a Platform Controller Hub device 
(PCH), non-descriptor mode has been phased out and is 
no longer supported 
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Descriptor Mode 
•  Enables chipset features like: 

–  Integrated Gigabit Ethernet, Host processor for Gigabit Ethernet 
Software, Management Engine 

•  Provides support for two SPI flash chips 
•  Divides the SPI flash into regions 
•  Provides hardware enforced security restricting region access 
•  Chipset Soft Strap region provides the ability to use Flash 

NVM as an alternative to hardware pull-up/pull-down resistors 
for both ICH and PCH 
–  On reset, the controller hub reads the soft strap data out of the SPI 

flash 
•  Can be programmed (at a minimum) using the commands 

specified in the Intel ICH/PCH datasheet 
–  But each chip can support additional commands, not very 

standardized 22	  



Memory Mapping: Descriptor Mode 
•  All of the flash chip is 

mapped to high memory 
•  In Descriptor Mode, only the 

BIOS region of the flash is 
readable in memory 

•  All other regions return 0xFF 
on reads 
–  We'll get to the other regions in 

a bit Memory	  

4GB	  

Flash	  Contents	  

Flash	  contents	  that	  are	  
viewable	  in	  Memory	  

BIOS	  Region	  
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Non-Descriptor Mode 
•  Best described by its lack of features (as compared to 

Descriptor mode) 
•  The entire flash is used for BIOS (this does not mean the 

BIOS will be larger) 
•  Security features available in Descriptor mode are not 

available in Non-Descriptor mode 
–  The BIOS/CPU can read/write to the flash without restriction 

•  Therefore there is also no support for Gb Ethernet, 
Management Engine, or chipset soft straps 

•  Interesting quote in Intel’s ICH datasheet (10, in this case): 
“[in Non-Descriptor Mode], Direct read and writes are not 
supported.” 

•  ‘Non-Descriptor Mode == !Descriptor Mode’ 
•  No longer a viable option on the newer PCH systems, since 

they require a valid flash descriptor 
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Memory Mapping: Non-Descriptor Mode 
•  In Non-Descriptor Mode the 

entire flash contents are visible 
in memory (more than just 
BIOS, if any more is present) 

•  If flash is < 16 MB and the 
FWH decoders are enabled in 
LPC, you will see the BIOS 
mapped repeatedly (think 
ribbons) at high memory 
–  A 4MB BIOS is mapped 4 times 

in the high 16 MB of memory 
space 

•  A flash device in descriptor 
mode that has its descriptor 
signature “corrupted” will be 
viewable in memory in its 
entirety 
–  But the descriptor signature is 

protected, so that would require 
physical flash access to corrupt 

Memory	  

4GB	  

Flash	  Contents	  

Flash	  Contents	  Readable	  in	  Memory	  

EnEre	  Flash	  

4GB	  –	  16	  MB	  	  

4GB	  –	  size	  of	  flash	  (MB)	  
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Non-Descriptor Mode Memory Mapping 
•  Example of 4 MB 

device in “non-
descriptor” mode 
mapped to high 
16MB of memory 

•  “Invalid” Flash 
Descriptor 

0FF0A55Bh	  	  
instead	  of	  
0FF0A55Ah	  	  
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Why is some of the chip visible in memory in 
one mode but not the other? 

•  Has to do with the type of flash access as well as permissions to 
read that memory: 

•  There is an SPI “rule” that states: 
–  Every SPI Master has direct read access to it’s own region only 
–  Direct Access refers to memory reads in mapped memory 
–  Thus the BIOS Master can read the BIOS region in memory (mapped 

to high mem at 4 GB) 
•  In Descriptor mode, the SPI flash is divided into regions 

–  BIOS region, Flash Descriptor, etc. (we’ll cover in more detail soon) 
•  Therefore, in Descriptor Mode, only the BIOS region can be 

seen in high mapped-memory 
•  In Non-Descriptor mode, there is no concept of regions 

–  It’s just “the BIOS” 
•  So therefore, the entire “BIOS” (entire flash) can be seen in 

memory when the SPI flash is in Non-Descriptor mode 
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Flash Accesses: Direct vs. Register 

•  Direct Access 
–  This applies to memory accesses (mapped to high-memory) 
–  Masters are allowed to read only their own region 

•  CPU/BIOS can read the BIOS region 
•  Management Engine can read only the ME region 
•  GbE controller can read the GbE region (GbE software must use the 

programming registers) 

•  Register Access 
–  Access a region by programming the base address registers 
–  Register accesses are not allowed to cross a 4 KB aligned 

boundary 
–  Cannot execute a command that may extend across to a second 

SPI flash (if present) 
–  Software must know the SPI flash linear address it is trying to 

read 
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