
Advanced	 x86:	
BIOS	 and	 System	 Management	 Mode	 Internals	

SPI	 Flash	

Xeno	 Kovah	 &&	 Corey	 Kallenberg	
LegbaCore,	 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	 condiEon:	 You	 must	 indicate	 that	 derivaEve	 work	
"Is	 derived	 from	 John	 BuBerworth	 &	 Xeno	 Kovah’s	 ’Advanced	 Intel	 x86:	 BIOS	 and	 SMM’	 class	 posted	 at	 hBp://opensecuritytraining.info/IntroBIOS.html”	

BIOS Flash Overview
•  Everything we have talked about so far, although harmful

to a system, isn’t persistent unless you can write to the
BIOS

•  But one of the goals an attacker has in establishing a
presence in the system is persistence

•  To achieve persistence, the attacker will have to figure
out a way to write to the BIOS flash so that upon every
reboot, his presence is still there

3	

Results	 of	 Copernicus	 checks	
•  We’ve used Copernicus to scan all of MITRE, and

some other organizations.
•  Originally (in 2013) the data said about 35% of

systems were vulnerable.
•  Then we found more problems and it went up to 55%
•  Then people patched and it went down to 35%
•  Then we found more problems and it went up to 60%
•  Then we found more problems and it went up to 85%
•  And if the organizations had never patched, and we

looked at our first data with our last knowledge?
•  99.95% vulnerable	

4	

BIOS Flash Location
•  BIOS can reside in one of 3

locations:
1.  Firmware Hub (FWH)

–  Older technology and mostly
out of scope for this class

2.  SPI Flash
–  Most likely location

3.  PCI
–  intended for debugging or

recovering from a corrupted
BIOS (not supported
anymore on newer hardware)

5	

Boot BIOS Flash Location
•  The boot destination is

decided by the
configuration of the
following pins on the ICH/
PCH*

•  Pins are sampled at power-
up to determine location of
BIOS

•  Intended for static
configuration

•  PCI boot is intended only
for debugging or recovering
from corrupt BIOS (so not
necessarily static)

•  But since these are
hardware pins, it’s worth
checking if PCI is set as the
boot location, because you
might have a physical
hardware implant!

*	 References	 to	 ICH/PCH	 mean	 applicable	 to	 both	 legacy	 and	 modern	 chipsets	 6	

Example: Find BIOS Boot Destination
•  To programmatically find

where your BIOS is
configured to boot from,
you can also view bits
11:10 in the General
Control and Status
Register (GCS)

•  Located at memory-
mapped offsets
3410-3413h in the
Chipset Configuration
Registers

•  Chipset Configuration
Registers are mapped
starting at the address
held by RCBA…you
know, RCRB? :)

 Verify	 GCS	 locaEon	 on	 your	 datasheet	 if	 not	 using	 the	 class	 E6400.	

01b	 	 SPI	 (typo	 in	 datasheet)	

7	

Reminder: RCBA/RCRB

•  The Root Complex Register Block (RCRB) decode range is
located in the Root Complex Base Address (RCBA) register
located in the LPC (D31:F0, offset F0-F3h)

•  The root complex is PCI-Express related. It connects the
processor and memory to the PCI Express devices.
–  If you want to know more about the inner workings of PCI Express,

there are a number of good sources, such as (Darmawan):
–  http://resources.infosecinstitute.com/system-address-map-

initialization-x86x64-architecture-part-2-pci-express-based-systems/

You	 know	 the	
drill!	

8	

Example: Find BIOS Boot Location
•  Locate RCRB:
•  Bit 0 is just an enable

bit (the nibble this bit is
in is still part of the
address, but change it
to 0)

•  Here the RCRB begins
at FED1_8000h

•  The GCS register is
located at in the chipset
configuration registers.

•  At RCRB + 3410h =
FED1_B410h

 The	 root	 complex	 base	 address	 will	 differ	 on	 different	 systems.	 9	

Example: Find BIOS Boot Location

•  GCS at FED1_B410h
yields the following
value on our lab
system:

•  00C0_0440h
•  Bits 11:10 are 01b

which indicates that this
BIOS boots from SPI

•  But how can we trust
what this says? We’re
not actually sampling
the Controller’s pins in
this register

Bits 11:10

10	

Example: Change BIOS Access Destination
•  Notice these bits are R/W?
•  You can change the

destination for BIOS
accesses

•  Likely this is to help the
system recover from a
corrupted BIOS

•  But it could be certainly
misused as well

•  Note just to be clear: The
bits in GCS alter accesses
to the BIOS *only* after the
BIOS has begun booting
–  Chipset Configuration

registers must be mapped to
memory, etc.

•  The functional straps are
physical pins which cannot
be altered and decide the
BIOS Boot Location

11	

Example: Change BIOS Access Destination

•  Bring up a memory window and go to an address which
shows the memory-mapped BIOS (like FFFF_FF80h which
will show us the entry vector)

•  You should see the BIOS in memory

12	

Example: Change BIOS Access Destination

•  Modify the GCS register to 00C00C40h, bits 11:10 are 11b now which
point the device to the LPC

•  On our lab system the LPC has no firmware BIOS so this translates to
reads of all 1’s (0xFF)

•  Your personal system may differ and you may actually see valid binary
here.

 13	

Example: LOCK BIOS Access Destination

•  Intel provides a way to
lock down the
destination of BIOS
accesses

•  When bit 0 in the
General Control and
Status Register (GCS)
is set, bits 11:10
become Read-Only

•  The BIOS should lock
this down!

 14	

Example: Change BIOS Access Destination

•  Set bits 11:10 in the GCS register back to their original
values (01b for SPI)*

•  Assert bit 1 in GCS, now GCS is 00C00441h
•  Now find that bits 11:10 are fixed in place
 *Or	 leave	 them	 poinEng	 to	 nothing,	 this	 is	 not	 permanent	 and	 nothing	 a	 reboot	 won’t	 reset	 15	

A Word About This

•  This only affects direct (memory) accesses to BIOS flash
•  Programs (like Copernicus or Flashrom) that read directly

from the BIOS flash using the SPI programming registers (for
example) will still successfully read the BIOS binary from the
chip

 16	

Firmware Hub (FWH)

•  Provides register-based R/W
protection for each code/data
storage block

•  Has hardware write-protect pins
for the top boot block and the
remaining code/data storage
blocks

•  Contains a Random Number
Generator (RNG)

•  More than one FWH device can
be supported

•  Operates at 33 MHz
(synchronous to the PCI bus)

•  Has a lot of pins compared to
SPI

Intel	 82802AB/82802AC	 Firmware	 Hub	 (FWH)	 	 17	

Firmware Hub (FWH)
•  Memory-mapped interface
•  Programmable Erase,

Read, Write commands
•  Each block can be locked

down to prevent Reads
and/or Writes

•  Firmware hubs are rare (at
least in modern PC’s) and
we have never seen one

•  Sample FWH datasheet:
•  http://download.intel.com/

design/chipsets/datashts/
29065804.pdf

•  If you ever encounter a
system with a firmware
hub email me and tell me
the make/model please Intel	 82802AB/82802AC	 Firmware	 Hub	 (FWH)	 	 18	

Serial Peripheral Interface (SPI)

•  SPI controller can support 1 or 2 devices for 32 MB maximum
addressable space

•  Lower cost alternative (per Intel datasheet)
•  Memory-mapped programming interface offset from RCRB

(consult your datasheet for its exactly offset)

•  Intel’s ICH/PCH implements a SPI
interface for the BIOS flash device

•  Used as a replacement for the Firmware
Hub (FWH) on LPC

•  SPI is required in order to support the
Management Engine (ME), Gigabit
Ethernet (GbE), and others.

•  Each SPI flash device can be up to 16
MB (224 bits) Typically	 8	 pins,	 can	 be	 16	

*Based	 on	 datasheet	 informaEon	 and	 that	 the	 Flash	 Address	 Register	 accepts	 addresses	 occupying	 bits	 24:0	 19	

SPI Overview

•  SPI protocol can support data rates up to 100 MHz
–  Intel’s implementation is configurable to operate at either 20 MHz

or 33 MHz (or 50 MHz on the newer PCI Express systems), or
66MHz

•  Intel abstracts most of the low-level SPI protocol from
you

•  SPI protocol is not a fixed standard
–  Different chips will support different commands and so forth

•  Intel defines a set of minimum requirements for a chip to
support.
–  Likely though each chip will support more than just that bare

minimum
•  So we’ll be covering Intel’s implementation and interface

to SPI, not really the SPI protocol itself (they intertwine
somewhat of course).

20	

SPI Operating Modes

•  Since I/O Controller Hub version 8, the SPI flash has
been able to support 2 distinct operating modes:

•  Non-Descriptor Mode (RIP, deceased ’09)
–  IT LIVES! (On embedded Intel Atom devices like MinnowBoard!)
–  In ICH7 this is the only supported operating mode

•  Descriptor Mode
–  Since ICH8 (so ICH8, ICH9, ICH10, and PCH)

•  For systems that have a Platform Controller Hub device
(PCH), non-descriptor mode has been phased out and is
no longer supported

21	

Descriptor Mode
•  Enables chipset features like:

–  Integrated Gigabit Ethernet, Host processor for Gigabit Ethernet
Software, Management Engine

•  Provides support for two SPI flash chips
•  Divides the SPI flash into regions
•  Provides hardware enforced security restricting region access
•  Chipset Soft Strap region provides the ability to use Flash

NVM as an alternative to hardware pull-up/pull-down resistors
for both ICH and PCH
–  On reset, the controller hub reads the soft strap data out of the SPI

flash
•  Can be programmed (at a minimum) using the commands

specified in the Intel ICH/PCH datasheet
–  But each chip can support additional commands, not very

standardized 22	

Memory Mapping: Descriptor Mode
•  All of the flash chip is

mapped to high memory
•  In Descriptor Mode, only the

BIOS region of the flash is
readable in memory

•  All other regions return 0xFF
on reads
–  We'll get to the other regions in

a bit Memory	

4GB	

Flash	 Contents	

Flash	 contents	 that	 are	
viewable	 in	 Memory	

BIOS	 Region	

23	

Non-Descriptor Mode
•  Best described by its lack of features (as compared to

Descriptor mode)
•  The entire flash is used for BIOS (this does not mean the

BIOS will be larger)
•  Security features available in Descriptor mode are not

available in Non-Descriptor mode
–  The BIOS/CPU can read/write to the flash without restriction

•  Therefore there is also no support for Gb Ethernet,
Management Engine, or chipset soft straps

•  Interesting quote in Intel’s ICH datasheet (10, in this case):
“[in Non-Descriptor Mode], Direct read and writes are not
supported.”

•  ‘Non-Descriptor Mode == !Descriptor Mode’
•  No longer a viable option on the newer PCH systems, since

they require a valid flash descriptor
24	

Memory Mapping: Non-Descriptor Mode
•  In Non-Descriptor Mode the

entire flash contents are visible
in memory (more than just
BIOS, if any more is present)

•  If flash is < 16 MB and the
FWH decoders are enabled in
LPC, you will see the BIOS
mapped repeatedly (think
ribbons) at high memory
–  A 4MB BIOS is mapped 4 times

in the high 16 MB of memory
space

•  A flash device in descriptor
mode that has its descriptor
signature “corrupted” will be
viewable in memory in its
entirety
–  But the descriptor signature is

protected, so that would require
physical flash access to corrupt

Memory	

4GB	

Flash	 Contents	

Flash	 Contents	 Readable	 in	 Memory	

EnEre	 Flash	

4GB	 –	 16	 MB	 	

4GB	 –	 size	 of	 flash	 (MB)	

25	

Non-Descriptor Mode Memory Mapping
•  Example of 4 MB

device in “non-
descriptor” mode
mapped to high
16MB of memory

•  “Invalid” Flash
Descriptor

0FF0A55Bh	 	
instead	 of	
0FF0A55Ah	 	

26	

Why is some of the chip visible in memory in
one mode but not the other?

•  Has to do with the type of flash access as well as permissions to
read that memory:

•  There is an SPI “rule” that states:
–  Every SPI Master has direct read access to it’s own region only
–  Direct Access refers to memory reads in mapped memory
–  Thus the BIOS Master can read the BIOS region in memory (mapped

to high mem at 4 GB)
•  In Descriptor mode, the SPI flash is divided into regions

–  BIOS region, Flash Descriptor, etc. (we’ll cover in more detail soon)
•  Therefore, in Descriptor Mode, only the BIOS region can be

seen in high mapped-memory
•  In Non-Descriptor mode, there is no concept of regions

–  It’s just “the BIOS”
•  So therefore, the entire “BIOS” (entire flash) can be seen in

memory when the SPI flash is in Non-Descriptor mode

27	

Flash Accesses: Direct vs. Register

•  Direct Access
–  This applies to memory accesses (mapped to high-memory)
–  Masters are allowed to read only their own region

•  CPU/BIOS can read the BIOS region
•  Management Engine can read only the ME region
•  GbE controller can read the GbE region (GbE software must use the

programming registers)

•  Register Access
–  Access a region by programming the base address registers
–  Register accesses are not allowed to cross a 4 KB aligned

boundary
–  Cannot execute a command that may extend across to a second

SPI flash (if present)
–  Software must know the SPI flash linear address it is trying to

read

28	

