

Malware	 Dynamic	 Analysis
Part	 4

Veronica	 Kovah
vkovah.ost	 at	 gmail

All materials is licensed under a Creative
Commons “Share Alike” license

http://creativecommons.org/licenses/by-sa/3.0/

3See notes for citation

Outline

● Part 3
– Malware functionality

● Keylogging, Phone home, Security degrading, Self-
destruction, etc.

● Part 4
– Using an all-in-one sandbox – Cuckoo Sandbox
– Malware Attribute Enumeration and

Characterization (MAEC)
– Actionable output

● Detection – Snort and Yara

4See notes for citation

Malware Analysis Sandbox
● Provides file system, registry keys, and network traffic

monitoring in controlled environment and produces a well
formed report

● Using a sandbox is more efficient and sometimes more
effective

● Configure your own sandbox such as Joebox, GFI
Sandbox, and Cuckoo Sandbox.

● Use public sandbox such as ThreatExpert, GFI
ThreatTrack, and Anubis
– Do not submit malware to a public sandbox

if it reveals sensitive information about your
organization and/or customer.

[References]
● Joe Sandbox, http://www.joesecurity.org/index.php/joe-sandbox-standalone
● GFI Sandbox, http://www.gfi.com/malware-analysis-tool
● Cuckoo Sandbox, http://www.cuckoosandbox.org
● ThreatExpert, http://www.threatexpert.com/submit.aspx
● GFI ThreaetTrack, http://www.threattrack.com/
● Anubis, http://anubis.iseclab.org/

[Image Sources]
● http://plannerwire.net/wp-content/uploads/2011/02/Playing-Sandbox_meeting_planners.gif

[References]
● Cuckoo Sandbox Book, http://docs.cuckoosandbox.org/en/latest

[Image Sources]
● http://www.cuckoosandbox.org/graphic/cuckoo.png

6See notes for citation

Poison Ivy
● Open three terminals
● #1 terminal, run inetsim

– $ sudo inetsim
● #2 terminal, run Cuckoo Sandbox

– $ cd ~/MalwareClass/tools/cuckoo
– Edit conf/auxiliary.conf (to sniff on vboxnet1)
– $ python ./cuckoo.py

● #3 submit piagent.exe to Cuckoo
– $ cd ~/MalwareClass/tools/cuckoo/utils
– $	 python	 ./submit.py
~/MalwareClass/samples/PoisonIvy/piagent.exe

7See notes for citation

Results
● Task results are generated under {Cuckoo

Root}/storage/analysis/[task number]/
– {Cuckoo Root} = ~/MalwareClass/tools/cuckoo
– reports directory includes reports in different formats
– logs directory includes raw data named <process id>.bson
– shots directory includes screen shots
– files directory includes dropped files. You can then run dropped

executables through on their own
● Submitted sample will be copied to {Cuckoo

Root}/storage/binaries/MD5NAME, where MD5NAME is the
md5 of the submitted sample
– A symbolic link (named binary) exists under the task result

directory

8See notes for citation

Poison Ivy Results

● $ cd
~/MalwareClass/tools/cuckoo/storage/analysis/
1/reports

● $ firefox report.html &
● $ gedit report.json &
● $ firefox report.maec-4.0.1.xml &

9See notes for citation

MAEC (Malware Attribute
Enumeration and Characterization)

● “a standardized language for encoding and
communicating high-fidelity information about
malware based upon attributes such as
behaviors, artifacts, and attack patterns”

● A standard is necessary to provide a common
way to share malware analysis results among
organizations to avoid duplicate, inaccurate
work

https://maec.mitre.org/about/index.html

[References]
● MAEC, https://maec.mitre.org

10See notes for citation

MAEC (Malware Attribute
Enumeration and Characterization)

● Standard communication method among
– human↔human
– human↔tool
– tool↔tool

● MAEC Schema
– Defines syntax

● Would be very useful to search openmalware.org
samples based on attributes, could make a new
search engine: “Ask MAEC!”

http://maec.mitre.org/language/schema.html

[References]
● Ivan Kirillov et al. Malware Attrribute Enumeration and Characterization,
https://maec.mitre.org/about/docs/Introduction_to_MAEC_white_paper.pdf

[Image Sources]
● https://maec.mitre.org/images/schema.gif

11See notes for citation

Parite
● Submit parite sample to Cuckoo Sandbox

– $ cd ~/MalwareClass/tools/cuckoo/utils
– $ python submit.py

~/MalwareClass/samples/parite/malware.exe

Q1. Does this drop files with randomized names?
Q2. How does it maneuver?
Q3. How does it persist?
Q4. Does it have self-avoidance?
Q5. Does it self-destruct?
Q6. Where does it try to connect to?

12See notes for citation

Answers for Parite Lab

A1. Yes
– C:\DOCUME~1\student\LOCALS~1\Temp\?ta1.tmp

A2. OpenProcess (PID=1760)→VirtualAllocEx →
NtWriteVirtualMemory →CreateRemoteThread
– Now you are interested in the process name

of PID 1760 :D

13See notes for citation

Answers for Parite Lab

A3. Set a registry value
Software\Microsoft\Windows\CurrentVersion\RU
N\fmsiocps
– we don't know exact data in the value based on

cuckoo result

A4. Yes, mutex “Residented” is created
A5. Not explicitly
A6. No explicit network activity, we don't know if

the malware is waiting for an event or just
sleeping

14See notes for citation

Nitol
● Submit nitol sample to Cuckoo Sandbox

– $ cd ~/MalwareClass/tools/cuckoo/utils
– $ python submit.py

~/MalwareClass/samples/nitol/malware.exe

Q1. Does this drop files with randomized names?
Q2. How does it maneuver?
Q3. How does it persist?
Q4. Does it have self-avoidance?
Q5. Does it do self-destruction?
Q6. Where does it try to connect to?

15See notes for citation

Answers for Nitol

A1. Yes
– One file name is random:

● C:\WINDOWS\system32\??????.exe

A2. We cannot identify maneuvering technique from the
cuckoo's result
– SetWindowsHookEx? Nope, the hooks

(WH_MSGFILTER (-1) and WH_CBT (5)) are for its
own process

A3. Registered an auto-start service
– HKLM\System\CurrentControlSet\Services\Distribuijq
– CreateSerivce(), StartService() API calls

16See notes for citation

Answers for Nitol

A4. No, false positive
– ShimCacheMutex is opened by side effect

A5. Yes, it moves itself to
– C:\DOCUME~1\student\LOCALS~1\Temp\SOF

TWARE.LOG
A6. tutwl.3322.org

– Microsoft took down the entire 3322.org (google
“Operation b70”) but they came back online
after agreeing to clean out malware users

17See notes for citation

IMworm
● Submit nitol sample to Cuckoo Sandbox

– $ cd ~/MalwareClass/tools/cuckoo/utils
– $ python submit.py

~/MalwareClass/samples/IMworm/malware.exe

Q1. Does this drop files with randomized names?
Q2. What's the file's original name?
Q3. How does it persist?
Q4. Does it have self-avoidance?
Q5. Does it do self-destruction?
Q6. Where does it try to connect to?

[Image Sources]
● http://i0.kym-cdn.com/entries/icons/original/000/007/423/untitle.JPG

19See notes for citation

Answers for IMworm

– Sets registry value:
● SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\Userinit = ?
(maybe, maybe not)

● NOTE: It's not setting Run registry key
A4. No, false positive

– ShimCacheMutex is opened by side effect
A5. No apparent self-destruction
A6. Tried to get http://quicknews.info/YMWorm.exe

20See notes for citation

Outline

● Part 3
– Malware functionality

● Keylogging, Phone home, Security degrading, Self-
destruction, etc.

● Part 4
– Using an all-in-one sandbox – Cuckoo Sandbox
– Malware Attribute Enumeration and

Characterization (MAEC)
– Actionable output

● Detection – Snort and Yara

21See notes for citation

Yara

● Open source tool to identify and classify
malicious files based on textual or binary
patterns

● Light-weight way of performing signature
checks

● Can be used for any binary data (exe, pdf,
pcaps, etc)

● Useful in an email server for tip-offs, and
filtering

[References]
● yara-project, http://code.google.com/p/yara-project/

22See notes for citation

rule silent_banker : banker
{
 meta:
 description = "This is just an example"
 thread_level = 3
 in_the_wild = true

 strings:
 $a = {6A 40 68 00 30 00 00 6A 14 8D 91}
 $b = {8D 4D B0 2B C1 83 C0 27 99 6A 4E 59 F7
F9}
 $c = "UVODFRYSIHLNWPEJXQZAKCBGMT"

 condition:
 $a or $b or $c
}

Yara Signature

http://code.google.com/p/yara-project/

23See notes for citation

Yara Signature

● Identifier
– Any alphanumeric characters and underscores

but cannot start with a number
● String definition

– A string identifier starts with $ followed by
alphanumeric character and underscores

– Values
● Text strings enclosed by double quotes
● Hex strings enclosed by curly brackets
● Regular expression enclosed by slashes

[References]
● Víctor Manuel Álvarez, YARA User's Manual 1.6, http://code.google.com/p/yara-
project/downloads/detail?name=YARA%20User%27s%20Manual%201.6.pdf

24See notes for citation

Yara Signature

● Condition
– Boolean operators

● and, or, not
– Relational operators

● >=, <=, <, >, ==, !=
– Arithmetic and bitwise operators

● +, -, *, /, &, |, <<, >>, ~
● Counting strings

strings:
 $a = “text”
condition:
 #a == 6

25See notes for citation

Bot classification
● We will make a yara signature for a bot malware in

this lab
● Identify characteristic strings from the agobot sample

– $ strings ~/MalwareClass/samples/agobot/malware.exe
> /tmp/agobot.txt

● Make an yara signature using combination of the
identified strings
– Create a file (e.g. detection.yar) for the signature

● To run yara
– $ yara detection.yar

~/Malware/samples/agobot/malware.exe

26See notes for citation

One possible answer
rule Agobot
{
 strings:
 $msg = "PhatBNC" nocase
 $conf1 = "ddos_maxthreads"
 $conf2 = "scan_maxsockets"
 $conf3 = "scan_maxthreads"
 $cmd1 = "do_stealth"
 $cmd2 = "do_avkill"
 $cmd3 = "do_speedtest"
 $cmd4 = "bot_topiccmd"
 $cmd5 = "bot_meltserver"
 $cmd6 = "bot_randnick"
 condition:
 (#msg > 10) and $conf1 and $conf2 and $conf3
 and (any of ($cmd1, $cmd2, $cmd3, $cmd4, $cmd5, $cmd6))
}

27See notes for citation

Snort

● Open source network intrusion
detection/prevention tool (NIDS/NIPS)

● 3 modes
– Sniffer: read packets off the network and display on

the screen
– Packet Logger: logs the packets to a log file
– NIDS: analyze network traffic and match with user-

defined signatures and make actions (e.g. alert,
drop, etc.)

[References]
●Snort, http://www.snort.org/
●Snort Users Manual 2.9.4, http://s3.amazonaws.com/snort-
org/www/assets/166/snort_manual.pdf

[Image Sources]
●http://4.bp.blogspot.com/_2IvFH57W8Hc/TPfpzDtwQwI/AAAAAAAAAFk/YFngxr8jLgI/s1600/snor
t_large.gif

28See notes for citation

Snort

● Preprocessors provides various pre-
detection processing
– Frag3: IP defragmentation
– Stream5: TCP/UDP session tracking
– RPC decode: RPC record defragmentation
– HTTP Inspect: HTTP fields identification,

normalization etc.
● A preprocessor may depends on the other
● Supports custom preprocessor

29See notes for citation

Snort Signatures
● Detection can be implemented in preprocessor, Snort

(text) rules, or SO (shared object) rules.
● Snort rules

● Rule headers
– Rule action tells Snort what to do (e.g. alert, log, drop)
– IP addresses in Classless Inter-Domain Routing (CIDR)

notation
– Port numbers
– Direction operator should be “->” or “<>” (bidirectional)

alert tcp any any -> any 80 (msg:”No deadbeef”; content:”DEADBEEF”;)

SRC IP PORT DEST IP PORT

[References]
● Pre-Compile SO Rules: Supported Platforms, https://www.snort.org/snort-rules/shared-object-
rule

30See notes for citation

Snort Signatures

● Rule options
– Separated by semicolon (;)
– msg: message to be displayed in log
– content: ascii string or binary to match
– content modifiers

● nocase, depth, offset, distance, within, http_header,
http_client_body, http_uri, file_data

– pcre: match can be written in perl compatible
regular expression

– flags: checks TCP flag bit

31See notes for citation

Detect Beaconing Traffic
● We will write a NDIS signature for this lab on the host

machine
$ wireshark ~/Malware/misc/darkshell.pcap &

● Lab is already configured
– Fixed the permission violation error

$ sudo usermod -aG snort student
– Set HOME_NET to 192.168.57.0/24 in /etc/snort/snort.conf

● Let's run Snort with the existing Snort rules
– $ snort -c /etc/snort/snort.conf -r

~/Malware/misc/darkshell.pcap -l /tmp

32See notes for citation

Detect Beaconing Traffic

● Open a new file to write a Snort rule
● You can start with the following template and fill

up detection rule options
– alert tcp any any -> any any (<your rule options

here>)
● To test your rule

– $ snort -c <rule file path> -r <pcap file path> -l /tmp

Phone	 Home	 Format
// Darkshell bot-to-CnC comms
struct {
 // Header:
 DWORD dwMagic; // always 0x00000010 for Darkshell
 // Obfuscated section:
 char szComputerName[64]; // Name of infected host, NULL-terminated/extended
 char szMemory[32]; // Amount of memory in infected host; format "%dMB"; NULL-
terminated/extended
 char szWindowsVersion[32]; // Specifies version of Windows; one of: Windows98, Windows95,
 // WindowsNT, Windows2000, WindowsXP, Windows2003, or Win Vista;
 // NULL-terminated/extended
 char szBotVersion[32]; // Specifies version of bot; NULL-terminated/extended;
 DWORD szUnknown1[4]; // ??? - Always NULL-terminated 'n'
 // Binary section:
 char szPadding1[32]; // Filled with 0x00 bytes
 WORD wUnknown2; // ??? - We have seen 0x00A0, 0x00B0, and 0x00C0
 WORD wUnknown3; // ??? - Always 0xFD7F
 char szPadding2[20]; // Filled with 0x00 bytes
 WORD wUnknown4; // ??? - Always 0xB0FC
 BYTE cUnknown5; // ??? - We have seen 0xD6, 0xD7, 0xE6, 0xE7, and 0xF1
 BYTE cZero; // Always 0x00
 DWORD dwSignature[8]; // Always 0x00000000, 0xFFFFFFFF, 0x18EE907C, 0x008E917C,
 // 0xFFFFFFFF, 0xFA8D91&C, 0x25D6907C, 0xCFEA907C
};

http://ddos.arbornetworks.com/2011/01/darkshell-a-ddos-bot-targetting-vendors-of-industrial-
food-processing-equipment/

34See notes for citation

What We Learned in Part 1

● Background concepts & tools
– PE files, Windows Libraries, Processes,

Threads, Registry, Windows Services,
– TrID, Process Explorer, Process Monitor,

PsServices, Wireshark, CFF Explorer
● Observing an isolated malware analysis lab

setup
– Ubuntu, Virtualbox, inetsim

● Malware terminology

35See notes for citation

What We Learned in Part 2

● RAT exploration - Poison IVY
– Server and client

● Persistence techniques
– Registry, File system
– Autoruns, Regshot

● Maneuvering techniques
(How malware strategically positions itself)
– Code and DLL injection, DLL search order

hijacking, IAT, EAT, and inline hooking
– Procmon, WinApiOverride, Winobj

36See notes for citation

What We Learned in Part 3

● Malware functionality
– Key logging
– Phone home
– Beaconing
– Self-Avoidance
– Security degrading
– Simple stealth techniques (non-rootkit techniques)

● Self-destruction
● Hiding files

37See notes for citation

What We Learned in Part 4

● Using an all-in-one sandbox – Cuckoo Sandbox
– Good for automation and the first cut

● Malware Attribute Enumeration and
Characterization (MAEC)

● Actionable output – detection signatures
– Snort: network intrusion detection/prevention

system
– Yara: Malware identification and classification tool

38See notes for citation

All samples are from
openmalware.org

● 101d00e77b48685bc02c1ff9672e1e94 eldorado/malware.exe
● 9250281b5a781edb9b683534f8916392 agobot/malware.exe
● 3349eab5cc4660bafa502f7565ff761d conficker/malware.exe
● 9f880ac607cbd7cdfffa609c5883c708 Hydraq/malware.exe
● a10b9b75e8c7db665cfd7947e93b999b parite/malware.exe
● d7578e550c0a4d4aca0cfd01ae19a331 spyeye/malware.exe
● df150905e2537db936ef323f48e2c1bb magania/malware.exe
● 4a29d41dfda9cfcbcde4d42b4bbb00aa Darkshell/malware.exe
● 1a36fb10f0a6474a9fea23ee4139d13e nitol/malware.exe
● db19c23c5f77a697500075c790cd331c IMworm/malware.exe
● a9a2fb545068995f30df22f8a3f22a10 onlinegames/2/malware.exe
● f1bae35d296930d2076b9d84ba0c95ea onlinegames/1/malware.exe

You are here

Go here next

The End

