
Advanced x86:
Virtualization with VT-x

Part 1

David Weinstein
dweinst@insitusec.com

20121

All materials are licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

2

Acknowledgements

• <Could be you!> : Tell me something that I
didn’t know that ends up in the course
material

• Thanks to Xeno Kovah for pushing me to
create this material and for reviewing it
periodically as it was created.

• Thanks to Corey Kallenberg for device driver
signing info for Windows 7

20123

Introductions

• Name

• Department

• Work interests
– Projects, sponsor, etc.

20124

Prerequisites

• Intro/Intermediate x86 (or equivalent)
required

• Rootkits class will probably help

20125

Agenda

• Introduction

• Lightning x86_64 review

• VT-x
• VMM detection

• Relevant hypervisor projects

• Time permitting
– Discussion: writing “undetectable” bot for SC2/Diablo 3?

20126

Questions
• Stolen from Xeno…

• Questions: Ask ‘em if you got ‘em
– If you fall behind and get lost and try to tough it out until you

understand, it’s more likely that you will stay lost, so ask
questions ASAP.

• Browsing the web and/or checking email during class is
a great way to get lost ;)

• 2 hours, 10 min break, 2 hours, 1 hour lunch, 2 hours
10 min break, 1.5 hours, done

• Adjusted depending on whether I’m running fast or
slow (or whether people are napping after lunch :P)

20127

Scope

• While advanced, still introductory

• Fundamentals, challenges, techniques

• Open source virtualization technologies and implementations

• Primarily Intel® specific discussions, 64 bit host/guests

• All indications to sections in Intel® manual correspond to
December 2011 edition (Order Number: 325384-041US)
which should be provided with these slides

20128

Goals

• Identify/understand/implement various
hypervisor concepts, integrate by parts

• Blue Pill/Hyperjack
– post-boot (hosted) hypervisor shim technique

• Highly curated tour of Intel Manual with labs

20129

Introduction

• The goal is to get the core virtualization concepts
out of the way and clear up the semantics first.

• We’ll cover some 64-bit concepts

• Then move into specifics for Intel VT-x;
– We will be covering the architecture, instructions, and

specifics needed to write real code
– With Windows focus

– Series of labs to guide the way

201210

Sqr0…

• Each instance of an OS is called a Virtual
Machine (VM), guest, or domU.

• Hypervisor ≡ Virtual Machine Monitor (VMM)

• There are fundamentally diferent approaches
to virtualization; important to understand the
diferences

201211

Terminology Bootstrap

• Virtual Machine Extensions (VMX)

• Virtual Machine Monitor (VMM)

• VMX Root operation
– VMM, host VM

• Management VM
– dom0

• VMX Non-root operation
– domU, guest VM

• Others we’ll pick up along the way

201212

Virtualization is
Resource Abstraction yo!

• “The process of hiding the underlying physical
hardware in a way that makes it transparently
usable and shareable by multiple operating
systems.” [IBM]
– Most hardware can be virtualized to the point

that a guest doesn’t know/care

– Underlying physical hardware supporting VM may
not be dedicated to it

201213

[IBM] http://www.ibm.com/developerworks/linux/library/l-hypervisor/

Abstraction

201214

Ref: August 2005 System Virtual Machines, HotChips 17 Tutorial

Grey for
efect… 2005

seems so
long ago…

Vendor technologies
Intel AMD

CPU Flag Virtual Machine Extensions
(VMX)

Secure Virtual Machine (SVM)

Processor emulation VT-x AMD-v

Extended page tables Extended page tables (EPT) Rapid Virtualization Indexing
(RVI)

MMU emulation VT-d AMD-Vi

Network emulation VT-c

PCI emulation PCI-SIG I/O Virtualization PCI-SIG I/O Virtualization

201215

We will be focused on Intel VT-x

VMM Types

Type 1. “bare metal” hypervisors run directly on
the host hardware

– guest OS runs at level above the hypervisor

Type 2. “hosted” hypervisors run on top of an OS
– The hypervisor layer exists as distinct second

software level

– Guest operating systems run at the third level
above the hardware

201216

x86-64 Quick Review

• No more inline assembly (MS compilers)

• New instructions

• New General Purpose (GP) registers

• Changes to Segmentation

• Paging, now more fun

• RIP relative addressing

• REX prefixes

• x64 (fastcall) calling convention

201217

Checking The 64-bit feature

• Use CPUID input-value 0x80000001 for
obtaining extended feature bits

• Returned in the ECX and EDX registers

.data
ext_features DB 8 DUP(0) # 8 bytes (zeroed) for extended features bits

.code
mov eax, 80000001h # setup input-value in EAX
cpuid # then execute CPUID
mov [ext_features+0], edx # save feature-bits from EDX
mov [ext_features+4], ecx # save feature-bits from ECX

2012 18

Extended features bits

R R
L
S
F

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R R

I A - 3 2 e

R R R R R R R R
X
D

R R R R R R R R

S
Y
S
C
A
L
L

R R R R R R R R R R R

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ECX =

EDX =

IA32e = Intel 64-bit Technology
XD = eXecute Disable paging-bit implemented
SYSCALL = Fast SYSCALL / SYSRET (64-bit mode)
LSF = LAHF / SAHF implemented in 64-bit mode
R = reserved bit

Modified from http://cs.usfca.edu/~cruse/cs630f06/lesson05.ppt

2012 19

New instructions (x64)
CDQE Convert doubleword to quadword

CMPSQ Compare string operands

CMPXCHG16B Compare RDX:RAX with m128

LODSQ Load qword at address (R)SI into RAX

MOVSQ Move qword from address (R)SI to (R)DI

MOVZX (64-bits) Move doubleword to quadword, zero-extension

STOSQ Store RAX at address RDI

SWAPGS Exchanges current GS base register value with value in MSR
address C0000102H

SYSCALL Fast call to privilege level 0 system procedures

SYSRET Return from fast system call

201220

New GP Registers

• “In 64-bit mode, there are 16 general purpose
(GP) registers and the default operand size is
32 bits. However, general-purpose registers are
able to work with either 32-bit or 64-bit
operands.”

• R8-R15 represent eight new general-purpose
registers. All of these registers can be accessed
at the byte (B), word (2 B), dword (4 B), and
qword (8 B) level.

201221

Registers

201222

typedef struct _GUEST_REGS
{
 ULONG64 rax;
 ULONG64 rcx;
 ULONG64 rdx;
 ULONG64 rbx;
 ULONG64 rsp;
 ULONG64 rbp;
 ULONG64 rsi;
 ULONG64 rdi;
 ULONG64 r8;
 ULONG64 r9;
 ULONG64 r10;
 ULONG64 r11;
 ULONG64 r12;
 ULONG64 r13;
 ULONG64 r14;
 ULONG64 r15;
} GUEST_REGS, *PGUEST_REGS;

x86-64 Segmentation

• “Segmentation is generally (but not completely)
disabled, creating a fat 64-bit linear-address
space.”

• “Specifically, the processor treats the segment
base of CS, DS, ES, and SS as zero in 64-bit mode
(this makes a linear address equal an efective
address). Segmented and real address modes are
not available in 64-bit mode.”

201223

Intel Vol 3 (Section 3.2.4)

x86-64 Segmentation (2)

• “Even though segmentation is generally
disabled, segment register loads may cause
the processor to perform segment access
assists.”

• “During these activities, enabled processors
will still perform most of the legacy checks on
loaded values (even if the checks are not
applicable in 64-bit mode).”

201224

Paging structures

201225

32-bit

64-bit

4-Levels of mapping (4KB pages)

Page
Map

Level-4
Table

CR3

Page
Directory
Pointer
Table

Page
Directory

Page
Table

Page
Frame
(4KB)

ofset

64-bit ‘canonical’ virtual address *

sign-extension PML4 PDPT PDIR PTBL
 63 48 47 39 38 30 29 21 20 12 11 0

Each mapping-table contains up to 512
quadword-size entries

2012 26

PML4E
Table 4-

14.

PDPTE
Table 4-

16

PDE
Table 4-

18

Modified from http://cs.usfca.edu/~cruse/cs630f06/lesson27.ppt

* AMD/Intel did not extend virtual addresses to the full
64 bits in order to keep 4 instead of 6 levels of page
tables…

Page-Table entry format (4KB pages)

 Base
 Address

 [(M-1) : 32]
XD

63 62 52 51 M M-1 32

available Reserved
[51 : M] must be 0

 31 12 11 9 8 0

P
R
/

W

S
/
U

P
W
T

P
C
D

AD
P
A
T

GBase Address [31 : 12] avail

Legend:
 P = present (0=no, 1=yes) PWT = Page Write-Through (0=no, 1=yes)
 R/W (0=read-only, 1=writable) PCD = Page Caching Disable (0=no, 1=yes)
 S/U (0=supervisor-only, 1=user) PAT = Page-Attribute Table-Index
 A = accessed (0=no, 1=yes) G = Global page (1=yes, 0=no)
 D = dirty (0=no, 1=yes) M = 12+MAXPHYADDR
 XD = e(X)ecute (D)isable

2012 27

Modified from http://cs.usfca.edu/~cruse/cs630f06/lesson27.ppt

MAXPHYADDR (1)
• CPUID.80000008H:EAX[7:0] reports the physical-

address width supported by the processor.
– Ours will probably be 36-bits (64 GB)

• For processors that do not support CPUID function
80000008H, the width is generally 36 bits if
CPUID.01H:EDX.PAE [bit 6] = 1 and 32 bits otherwise.

• This width is referred to as MAXPHYADDR and is at
most 52 bits.

201228

RIP-relative addressing
• In 64-bit mode, the RIP register is the instruction pointer.

– This register holds the 64-bit ofset of the next instruction to be
executed.

• 64-bit mode also supports a technique called RIP-relative
addressing.
– Using this technique, the efective address is determined by adding a

displacement to the RIP of the next instruction.

• Some assemblers handle RIP-relative stuff differently 
– http://codegurus.be/codegurus/Programming/riprelativeaddressing_en.htm

201229

RIP relative addressing example
; New method

mov ah, [rip] ; since RIP points to the next instruction aka NOP, ah now holds 0x90

nop

; Alternative new method

lea rbx, [rip] ; RBX now points to the next instruction

nop

cmp byte ptr [rbx], 90h ; Should be equal!

; Old method (using 64-bit addressing!)

call $ + 5 ; A 64-bit call instruction is still 5 bytes wide!

pop rbx

add rbx, 5 ; RBX now points to the next instruction aka NOP

nop

mov al, [rbx]

; AH and AL should now be equal :)

cmp ah, al

201230

; Ref: http://codegurus.be/codegurus/Programming/riprelativeaddressing_en.htm#Mode64

REX Prefix

• REX (byte) prefixes are used to generate 64-
bit operand sizes or to reference registers R8-
R15.

• If REX.w = 1, a 64-bit operand size is used.

• See Intel Vol. 2 Section 2.2.1.2 for details

201231

REX.w bitflag

REX

Windows x64 calling convention (1)

• Argument passing (use registers)

• 4 register “fast-call” calling convention, with
stack-backing for those registers

• The arguments are passed in registers RCX,
RDX, R8, and R9.

• RAX, R10, R11 are volatile (caller saved)

201232

Windows x64 calling convention (2)

• All other registers are non-volatile (callee saved)
– must be preserved

• Caller responsible for allocating space for parameter
– must always allocate sufcient space for the 4 register

parameters,

– even if the callee doesn’t have that many (or any)
parameters

201233

Getting the Brand String with CPUID

• CPUID.EAX = 0x80000002
– Characters [0:15] in EAX, EBX, ECX, EDX

• CPUID.EAX = 0x80000003
– Characters [16:31] in EAX, EBX, ECX, EDX

• CPUID.EAX = 0x80000004
– Characters [32:47] in EAX, EBX, ECX, EDX

VMX Cpuid.S skeleton (for Linux)
.section .rodata

S0:

.string “VMX available!”

S1:

.string “No VMX!”

.text

.global main

.type main, @function

main:

pushq%rbp

movq %rsp, %rbp

<<set appropriate eax value>>

cpuid

<<look at VMX bit in appropriate register>>

jz <<no_vmx>>

leaq S0(%rip), %rdi

call puts

leave

ret

201235

You can lookup
appropriate values in
the Intel manual:
Vol 2a 3-212, Figure
3-6 (pg 269)

Our general cpuid.asm skeleton
(for Windows)

201236

_CpuId PROC
 push rbp
 mov rbp, rsp
 push rbx
 push rsi

 mov [rbp+18h], rdx
 mov eax, ecx
 cpuid
 mov rsi, [rbp+18h]
 mov [rsi], eax
 mov [r8], ebx
 mov [r9], ecx
 mov rsi, [rbp+30h]
 mov [rsi], edx

 pop rsi
 pop rbx
 mov rsp, rbp
 pop rbp
 ret
_CpuId ENDP

VOID _CpuId (
ULONG32 leaf,
OUT PULONG32 ret_eax,
OUT PULONG32 ret_ebx,
OUT PULONG32 ret_ecx,
OUT PULONG32 ret_edx

);

Function prototype:

Example:
Check for 64-bit using intrinsic cpuid

201237

typedef union
_CpuId {
 int i[4];
 struct {
 int eax;
 int ebx;
 int ecx;
 int edx;
 };
} CpuId_t;

int CheckFor64Bit() {
int eax;
CpuId_t regs; // eax, ebx, ecx, edx
char bitres;

eax = 0x80000001;
__cpuid(regs.i, eax);
bitres = _bittest((long*) ®s.edx, 29);
return bitres ? 1 : 0;

}

Intrinsic = Visual Studio supplied C macro (i.e. built in)

Lab: CPUID + VMX
• Purpose

– x86 Assembly refresher

• Note
– No more inline assembly on 64-bit Windows

• Steps
– Setup your coding environment

– Implement code in assembly to determine whether your CPU supports VMX,
and for fun AESNI if you like

– You can lookup appropriate values in the Intel manual Vol 2a 3-212, Figure
3-6. (Learn to search the manual!)

– Implement grabbing the brand string—we’ll be playing with that later

201238

64-bit driver notes (1)

201239

You will implement here:

You will implement here:

64-bit driver notes (2)

201240

64-bit driver notes (3)

201241

Generating a certificate
• Windows 7 requires signed drivers

– We can self-sign if we boot into “Test signing
mode”

– In Admin command prompt:
– bcdedit /set testsigning on

• Self signed drivers:

201242

Back to virtualization…

• Why is virtualization useful?

• How complex is it to implement?

• What inherent challenges can be expected?

• What techniques have proven successful?

201243

Popek and Goldberg
Virtualization Criterion

• POPEK, G. J., GOLDBERG, R. P., “Formal requirements for virtualizable third
generation architectures,” ACM Communications, July 1974

• Equivalence / Fidelity
– A program running under the VMM should exhibit a behavior essentially identical

to that demonstrated when running on an equivalent machine directly.

• Resource control / Safety
– The VMM must be in complete control of the virtualized resources.

• Efciency / Performance
– A statistically dominant fraction of machine instructions must be executed without

VMM intervention.

201244

Diferent strokes for diferent folks…

• CPU Simulation

• Binary translation

• Para-virtualization

• Hardware assist +/- some software emulation
– Emulation required for supporting some x86

guests (i.e., real-mode) even with hardware
virtualization

201245

Who is what?

• Full virtualization (aka emulation)
– Bochs and QEMU

• Paravirtualization
– Xen, VMware

• Binary Translation
– VMware, VirtualPC, VirtualBox, QEMU

• Hardware Virtualization
– Xen, VMware, VirtualPC, VirtualBox, KVM, …

201246

Software Virtualization Challenges

• CPUID instruction

• Ring Aliasing

• Ring Compression

• Memory addressing

• Non-faulting guest access to privileged state

• 17 instructions don't meet Popek and Goldberg
criteria [Lawton and Robin] (citation)

201247

CPUID instruction

• Returns processor identification and feature
information

• Thought: When employing virtualization, are
there certain undesirable features not to be
exposed to the guest?
– Some of these features could make the guest believe

it can do things it can’t

– Might want to mask of some features from guest
(virtualization)

201248

Ring Aliasing

• Ring 0 is most privileged

• OS kernels assume to be running at
ring 0
– Our guest VM is no diferent

• VMM and guest cannot share ring 0
– If guest isn’t in ring 0, could use PUSH

CS to figure that out (CPL is in the last
two bits of CS register)

201249

See Figure 5-3. Protection Rings for
Intel’s version

Ring Compression
• IA32 supplies two isolation mechanisms, Segmentation and

Paging

• Segmentation isn’t available in 64-bit

• So paging is only choice for isolating a guest

• But paging doesn’t distinguish between rings 0 – 2
– See Section 5.11.2 “If the processor is currently operating at a CPL of

0, 1, or 2, it is in supervisor mode; if it is operating at a CPL of 3, it is in
user mode.”

• And our host kernel is in ring 0 and guest software is in ring 3.
No more rings = we’re compressed.
– Therefore, our guest cannot be isolated from user-space applications

and cannot be reasonably protected from each other.

201250

Faulting instructions

• CLI (clear interrupt fag) and STI (set interrupt
fag

• A ring 3 guest that calls CLI or STI raises CPU
exception

• Diferent choices about how to architect your
virtualization environment
– options: turn these interrupts into virtual

interrupts, trap to VMM, binary translation.

201251

Non-faulting instructions (1)

• If you wanted to construct a VMM
and use fault-then-emulate to
virtualize the guest, x86 would turn
around and bite you
– Some things just don’t fault, and

silently fail instead (i.e., POPF, LAR)

– The POPF instruction is an example of a
sensitive instruction which is non-
privileged.

201252

Non-faulting instructions (2)

• Software can also execute the instructions
that read (store) from GDT, IDT, LDT, TR using
SGDT, SIDT, SLDT, and STR
– at any privilege level

• If the VMM maintains these registers with
unexpected values then clearly the guest can
figure that out and violate one of our
virtualization criteria

201253

Inline assembly refresh

• __asm {

• }

201254

Lab: Non-faulting instruction

• Go run POPF and confirm that it is bad for
virtualization (should be able to do it in ring 3)

• Remember, POPF pops stack into the FLAGS or
EFLAGS register

• Use popfd/pushfd

• Get current fags

• Write your own

• Check them

201255

“all will be revealed…”

Memory addressing

• OS kernel expects full (linear) virtual address space. VMM
could be in guest address space or mostly in separate
address space.

• Why “mostly?”
– Because there are some data structures to manage transitions

from guest to VMM (these structures need to be protected).

• Reminder
– only protection in 64-bit mode is paging (there is no

segmentation)

201256

VMWare-style Virtualization, (pre x64)

201257

PanSec 2009, Tavis Ormandy, Julien Tinnes

Address-space compression
• Refers to the challenges of protecting these portions of the virtual-

address space and supporting guest accesses to them

• VMware’s older approach could no longer be used on x64 guests
because they required segment limits
– “The virtual machine monitor’s trap handler must reside in the guest’s address

space, because an exception cannot switch address spaces.”

– In theory a task gate in the IDT pointing to a TSS with appropriate CR3 could
help, but the performance overhead might have been prohibitive.

– See http://www.pagetable.com/?p=25 (How retiring segmentation in AMD64
long mode broke VMware)

201258

http://www.pagetable.com/?p=25

Access to privileged state

• privileged instructions in the x86 instruction
like LGDT, LIDT

• MOV to CR3, CR0, CR4

• For example, contention for IDT between
guest and host would result in a crash most
likely…

201259

Software based techniques

1. Binary translation
– Emulation of one instruction set by another for same CPU.

– When source and target instruction set are the same, it’s
called instruction set simulation

– can be done “just in time” (JIT)
– can do some caching to be more efcient (i.e., hot spot detection)

2. Para-virtualization
– modification of guest kernel to support being virtualized

– Can be pretty efcient

201260

Binary Translation

• Can ``defang” privileged instructions such as
POPF

• Instruction streams are modified on the fy
(think interpreter) to trap ofending
instruction sequences.

• Two kinds
– static and dynamic translation

201261

Static Binary Translation

• May not be able to have full code coverage
– Hidden code in data sections could be reached

through an indirect jump or jump into the middle
of an instruction

– A problem if code is specifically trying to thwart
the binary translation mechanism

201262

Dynamic Binary Translation

• What do you think?

• Fill it in…

201263

How VMWare done it?

• Early versions of the VMware VMM scanned the
instruction stream being executed in the VM and
detected the presence of sensitive instructions.

• It then substituted the sensitive instruction with a
target instruction and then emulated the action of
the original instruction.

• Binary Translation introduced into VMware circa
1999

201264

If interested… read up

• PAYER, M., AND GROSS, T. Requirements for
fast binary translation. In 2nd Workshop on
Architectural and Microarchitectural Support
for Binary Translation (2009).

• PAYER, M., AND GROSS, T. R. Generating low-
overhead dynamic binary translators. In
SYSTOR’10 (2010).

201265

Microsoft Hyper-V

201266

https://en.wikipedia.org/wiki/File:Hyper-V.png

Microsoft Hyper-V

• A hypervisor instance has to have at least one
“parent partition”

• The virtualization stack runs in the parent
partition and has direct access to the hardware
devices.

• The parent partition then creates the child
partitions which host the guest OSs.

• Xen is pretty similar

201267

Lab: Which is it?

• Play with JSLinux (http://bellard.org/jslinux/)

• Run Linux in your web browser…
– So is it a binary translator or an emulator?

• Read technical notes
– http://bellard.org/jslinux/tech.html

201268

http://bellard.org/jslinux/

Review

201269

	Slide 1
	Slide 2
	Acknowledgements
	Introductions
	Prerequisites
	Agenda
	Questions
	Scope
	Goals
	Introduction
	Sqr0…
	Terminology Bootstrap
	Virtualization is Resource Abstraction yo!
	Abstraction
	Vendor technologies
	VMM Types
	x86-64 Quick Review
	Checking The 64-bit feature
	Extended features bits
	New instructions (x64)
	New GP Registers
	Registers
	x86-64 Segmentation
	x86-64 Segmentation (2)
	Paging structures
	4-Levels of mapping (4KB pages)
	Page-Table entry format (4KB pages)
	MAXPHYADDR (1)
	RIP-relative addressing
	RIP relative addressing example
	REX Prefix
	Windows x64 calling convention (1)
	Windows x64 calling convention (2)
	Getting the Brand String with CPUID
	VMX Cpuid.S skeleton (for Linux)
	Our general cpuid.asm skeleton (for Windows)
	Example: Check for 64-bit using intrinsic cpuid
	Lab: CPUID + VMX
	64-bit driver notes (1)
	64-bit driver notes (2)
	64-bit driver notes (3)
	Generating a certificate
	Back to virtualization…
	Popek and Goldberg Virtualization Criterion
	Different strokes for different folks…
	Who is what?
	Software Virtualization Challenges
	CPUID instruction
	Ring Aliasing
	Ring Compression
	Faulting instructions
	Non-faulting instructions (1)
	Non-faulting instructions (2)
	Inline assembly refresh
	Lab: Non-faulting instruction
	Memory addressing
	VMWare-style Virtualization, (pre x64)
	Address-space compression
	Access to privileged state
	Software based techniques
	Binary Translation
	Static Binary Translation
	Dynamic Binary Translation
	How VMWare done it?
	If interested… read up
	Microsoft Hyper-V
	Microsoft Hyper-V
	Lab: Which is it?
	Review

