
Advanced x86:
Virtualization with VT-x

Part 2

David Weinstein
dweinst@insitusec.com

20121

All materials are licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

2

Hardware Assisted Virtualization

• Hardware provides the heavy lifing to deal with all these
issues

• Host (dom0 or VMM) – whoever is there “first”
– in charge of creating VM “control structures” (VMCSs)

• Before a guest runs, specify a number of events/state
that cause VM exits
– Think “bitmask” of interrupts to jump out to VMM land

20123

Hardware Assisted Virtualization (2)

• Guest runs until
– It does something that has been registered in data

structures (i.e., VMCS) to exit out to VMM,

– It explicitly calls the VMCALL instruction

• VMM can preempt guest regularly with on a timer

• VMM can virtualize access to guest’s memory
– “guest-physical” addresses

• Instructions can cause trap to the VMM

20124

Basic Idea…

20125

AMD India Developer’s Conference Bangalore, 10-May-2006

VMCS
(intel)

VMXON

BluePill/HyperJacking Techniques

• Does not virtualize hardware
– BP’d systems see same hardware before/afer

• Early PoCs, BlackHat 2006
– BluePill (Rutkowska/Tereshkin @ COSEINC) , AMD-v,

Windows

– Vitriol (Dino Dai Zovi @ Matasano), Intel VT-x, Mac OS X

• Early academic PoC
– SubVirt, Samuel T. King et al

20126

General Hardware VM Based Rootkit

• Virtual Machine Based Rootkit (VMBR)

• Start with CPL=0

• Allocate some unpaged physical memory
– Ensure no linear mappings to VMM afer guest entry

• Move running OS into VMCS

• Intercept access to hardware (IO ports, …)

• Communicate to hardware VM rootkit via sentnel
instructons

20127

VMX introduces new x86 instructions

20128

Intel instructon purpose

VMXON Enable VMX

VMXOFF Disable VMX

VMLAUNCH Start/enter VM

VMRESUME Re-enter VM

VMCLEAR Null out/reinitialize VMCS

VMPTRLD Load the current VMCS

VMPTRST Store the current VMCS

VMREAD Read values from VMCS

VMWRITE Write values to VMCS

VMCALL Exit virtual machine to VMM

VMFUNC Invoke a VM function in VMM without exiting guest
operation

High level VMX flow

• VMM will take these actions

– Initially enter VMX mode using VMXON

– Clear guest’s VMCS using VMCLEAR

– Load guest pointer using VMPTRLD

– Write VMCS parameters using VMWRITE

– Launch guest using VMLAUNCH

– Guest exit (VMCALL or instruction, …)

– Read guest-exit info using VMREAD

– Maybe reenter guest using VMRESUME

– Eventually leave VMX mode using VMXOFF

20129

Introducing Chicken Syrup

• Your toy VMM, pieced together from various
bits

• Frankenchicken?

• Windows 7 x64 Driver

• Based on Virtdbg
– We’re building up to virtdbg’s feature set

201210

MSRs and VMX capabilities

• MSRs used to identify capabilities of the
hardware

• We’ll refresh on how to access MSRs and talk
about how each plays a role in implementing a
VMM

• Appendix A goes into detail on each.

• These slides should have what you need,
though.

201211

Relevant VMX MSRs (1)
• IA32_VMX_BASIC (0x480)

– Basic VMX information including revision, VMXON/VMCS region size,
memory types and others.

• IA32_VMX_PINBASED_CTLS (0x481)
– Allowed settings for pin-based VM execution controls.

– When you see Pin, think asynchronous events/interrupts

• IA32_VMX_PROCBASED_CTLS (0x482)
– Allowed settings for primary processor based VM execution controls.

Things like exiting on specific instruction execution

• IA32_VMX_PROCBASED_CTLS2 (0x48B)
– Allowed settings for secondary processor based VM execution controls.

201212

IA32_ naming convention just means it’s an architectural MSR, nothing to do with 32-
bit specifically

Relevant VMX MSRs (2)

• IA32_VMX_EXIT_CTLS (0x483)
– Allowed settings for VM Exit controls.

• IA32_VMX_ENTRY_CTLS (0x484)
– Allowed settings for VM Entry controls.

• IA32_VMX_MISC (0x485)
– Allowed settings for miscellaneous data, such as

RDTSC options, unrestricted guest availability,
activity state and others.

201213

Relevant VMX MSRs (3)

• IA32_VMX_CR0_FIXED{0,1} 0x486, 0x487
– Indicate the bits that are allowed to be 0 or to 1 in CR0 during

VMX operation.

• IA32_VMX_CR4_FIXED{0,1} 0x488, 0x489
– Same for CR4.

• IA32_VMX_VMCS_ENUM 0x48A
– Enumeration helper for VMCS.

• IA32_VMX_EPT_VPID_CAP 0x48C
– Provides information for VPIDs/EPT capabilities.

201214

#define MSRs
#define MSR_IA32_FEATURE_CONTROL 0x03a

#define MSR_IA32_VMX_BASIC 0x480

#define MSR_IA32_VMX_PINBASED_CTLS 0x481

#define MSR_IA32_VMX_PROCBASED_CTLS 0x482

#define MSR_IA32_VMX_EXIT_CTLS 0x483

#define MSR_IA32_VMX_ENTRY_CTLS 0x484

#define MSR_IA32_VMX_CR0_FIXED00x486

#define MSR_IA32_VMX_CR0_FIXED10x487

#define MSR_IA32_VMX_CR4_FIXED00x488

#define MSR_IA32_VMX_CR4_FIXED10x489

201215

MSR: IA32_FEATURE_CONTROL
(index 0x03a)

• Controls the ability to turn VMX “on”
– Usually controlled by the BIOS to enable/disable virtualization

• Gets set to 0 on CPU reset

• If not configured appropriately our VMX instructions will
generate invalid opcode exceptions

• Bit 0 is the lock bit. If 0, BIOS has locked us out of VMX

• Bit 1 enables VMX in SMX operation.
– Outside scope of this class

• Bit 2 enables VMX outside SMX, which we need

• In our case virtualizaton should already be turned “on” in
system BIOS, but please verify this for yourself.

201216

IA32_FEATURE_CONTROL in C

201217

typedef struct
_IA32_FEATURE_CONTROL_MSR
{
 unsigned Lock :1;
 unsigned VmxonInSmx :1;
 unsigned VmxonOutSmx :1;
 unsigned Reserved2 :29;
 unsigned Reserved3 :32;
} IA32_FEATURE_CONTROL_MSR;

MSR: IA32_VMX_CR0_FIXED0/1
(index: 0x486, 0x487)

• Bit X in CR0 is either fixed to 0 (with
value 0 in both MSRs), fixed to 1 (1 in
both MSRs), or flexible (0 in CR0_FIXED0
and 1 in CR0_FIXED1).

• If bit X is 1 in CR0_FIXED0, then that bit is
also 1 in CR0_FIXED1

201218

MSR: IA32_VMX_CR4_FIXED0/1
(index: 0x488, 0x489)

• Bit X in CR4 is either fixed to 0 (with
value 0 in both MSRs), fixed to 1 (1 in
both MSRs), or flexible (0 in CR4_FIXED0
and 1 in CR4_FIXED1).

• If bit X is 1 in CR0_FIXED0, then that bit is
also 1 in CR4_FIXED1

201219

CR4 Typedef
typedef struct _CR4_REG {

 unsigned VME :1; // Virtual Mode Extensions

 unsigned PVI :1; // Protected-Mode Virtual Interrupts

 unsigned TSD :1; // Time Stamp Disable

 unsigned DE :1; // Debugging Extensions

 unsigned PSE :1; // Page Size Extensions

 unsigned PAE :1; // Physical Address Extension

 unsigned MCE :1; // Machine-Check Enable

 unsigned PGE :1; // Page Global Enable

 unsigned PCE :1; // Performance-Monitoring Counter Enable

 unsigned OSFXSR :1; // OS Support for FXSAVE/FXRSTOR

 unsigned OSXMMEXCPT :1; // OS Support for Unmasked SIMD Floatng-Point Exceptons

 unsigned Reserved1 :2; //

 unsigned VMXE :1; // Virtual Machine Extensions Enabled

 unsigned Reserved2 :18; //

} CR4_REG, *PCR4_REG;

201220

Enabling and Entering the Matrix

• In addition to IA32_FEATURE_CONTROL…

• Before entering VMX operation, enable VMX by setting
CR4.VMXE[bit 13] = 1
– Or VMX instructions will also generate invalid-opcode exceptions

• VMX operation is then entered by executing the VMXON
instruction

201221

; Enable VMX by setting CR4.VMXE
MOV eax, cr4
BTS eax, 13
MOV cr4, eax

VMXON

201222

4. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any
bits in the range 63:32; see Appendix G.1.

VMXON vs VMCS region

• We will talk about a VMXON region and a
VMCS

• The VMXON region is created per logical
processor and used by it for VMX operations

• The VMCS region is created per guest virtual
cpu and used both by the hypervisor and the
processor.

201223

4KB-aligned Address
stated different ways

• Means 0x*****000 or 0x*************000
– i.e., ends in hex 000

– ADDR % 4096 = 0

– remainder when dividing by 4096 is 0

• Some of our data structures will require this
4KB alignment condition.

201224

MSR: IA32_VMX_BASIC (index 0x480)
• Bits 31:0 contain the 32-bit VMCS revision identifier

• Bits 44:32 report the # of bytes to allocate for the VMXON/VMCS regions

• Bit 48 indicates the width of the physical addresses that may be used for the VMXON
region, each VMCS, and data structures referenced by pointers in a VMCS (I/O
bitmaps, virtual-APIC page, MSR areas for VMX transitions). If the bit is 0, these
addresses are limited to the processor’s physical-address width. If the bit is 1, these
addresses are limited to 32 bits.
– This bit is always 0 for processors that support Intel 64 architecture.

201225

XOR ecx, ecx
MOV ecx, 0480h
RDMSR
; result is now in edx:eax (i.e., 64 bits across two 32 bit registers)

IA32_VMX_BASIC as C struct
typedef struct _VMX_BASIC_MSR {

 unsigned RevId:32;

 unsigned szVmxOnRegion:12;

 unsigned ClearBit:1;

 unsigned Reserved:3;

 unsigned PhysicalWidth:1;

 unsigned DualMonitor:1;

 unsigned MemoryType:4;

 unsigned VmExitInformation:1;

 unsigned Reserved2:9;

} VMX_BASIC_MSR, *PVMX_BASIC_MSR;

201226

0 – Uncacheable (UC)
6 – Write Back (WB)

Reading MSRs
_ReadMsr PROC

xor rax, rax

rdmsr ; MSR[ecx] --> edx:eax

 shl rdx, 32

 or rax, rdx

 ret ; don’t forget to ret or you will mess up your stack

_ReadMsr ENDP

201227

In our amd64/amd64.asm:

ULONG64 _ReadMsr(ULONG32 reg);

In our src/amd64.h:

PVMX_BASIC_MSR pvmx;
ULONG64 msr;
msr = _ReadMsr(MSR_IA32_VMX_BASIC);
pvmx = (PVMX_BASIC_MSR)&msr;

In our src/vmx.c :

Lab: VMXMSR driver

• Write a Windows driver to check the value of MSR
index 0x480 – 0x48A, + FEATURE_CONTROL (0x03a)

• Use the C structs provided for
MSR_IA32_VMX_BASIC/CR4 to dump a detailed
description

• Also grab and dump the CR4 value and for
convenience whether CR4.VMXE is set to 1

• Use DbgPrint’s to print the values and Sysinternals
DbgView to view the results.

201228

Allocating VMXON Region
in Windows Driver

201229

typedef LARGE_INTEGER PHYSICAL_ADDRESS, *PPHYSICAL_ADDRESS;
PVMX_BASIC_MSR pvmx;
PHYSICAL_ADDRESS pa;
PVOID va;
/* Read VMX_BASIC MSR into pvmx */

/* determine size from bits 44:32 of IA32_VMX_BASIC MSR or assume 4K … */
va = AllocateContguousMemory(size);

/* check for null va, set VMX revision ID */
*(ULONG32 *)va = pvmx->RevId;
pa = MmGetPhysicalAddress(va)
…
/* set CR4.VMXE bit => */

_VmxOn(…)

In our src/vmx.c :

Allocating VMXON Region
in Windows Driver

201230

; pure assembly implementaton
.data
vmxon_ptr dq ; initialized elsewhere
…
.code
MOV ecx, 0x480 ; IA32_VMX_BASIC MSR
RDMSR ;
MOV edx, [vmxon-ptr] ; load VMXON region
MOV [edx], eax ; VMX revision id into offset 0 of VMXON region

PHYSICAL_ADDRESS

typedef LARGE_INTEGER PHYSICAL_ADDRESS,
*PPHYSICAL_ADDRESS;

(LARGE_INTEGER is declared in ntddk.h)

201231

AllocateContiguousMemory
PVOID AllocateContguousMemory(ULONG size)

{

 PVOID Address;

 PHYSICAL_ADDRESS l1, l2, l3;

 l1.QuadPart = 0;

 l2.QuadPart = -1;

 l3.QuadPart = 0x200000;

 Address = MmAllocateContguousMemorySpecifyCache(size, l1, l2, l3, MmCached);

 if (Address == NULL) {

 return NULL;

 }

 RtlZeroMemory(Address, size);

 return Address;

}

201232

NTKERNELAPI PVOID

 MmAllocateContguousMemorySpecifyCache(

 IN SIZE_T NumberOfBytes,

 IN PHYSICAL_ADDRESS LowestAcceptableAddress,

 IN PHYSICAL_ADDRESS HighestAcceptableAddress,

 IN PHYSICAL_ADDRESS BoundaryAddressMultiple OPTIONAL,

 IN MEMORY_CACHING_TYPE CacheType

);

/* declared in ntddk.h */

201233

MEMORY_CACHING_TYPE

• MmNonCached
– The requested memory should

not be cached by the processor.

• MmCached
– The processor should cache the

requested memory.

• MmWriteCombined
– The requested memory should

not be cached by the processor,
but writes to the memory can
be combined by the processor.

201234

/* declared in ntddk.h */
typedef enum
_MEMORY_CACHING_TYPE {
 MmNonCached,
 MmCached,
 MmWriteCombined
} MEMORY_CACHING_TYPE;

Lab: VMXON!

2012

• Expand on VMXMSR lab to allocate VMXON
region, initialize it, and turn VMX on!

• Allocate contiguous regions for VMXON region
based on appropriate size (hint
IA32_VMX_BASIC)

• You’ll need to make another assembly function
with C prototype:
– VOID _VmxOn(PHYSICAL_ADDRESS PA);

35

Lab Review
• CheckIfVMXIsSupported()

– CPUID leaf 1, bit 5 in ecx = 1 ?

• CheckIfVMXIsEnabled()
– Check CR4 bit 13 = 1 ? Set it if not.

– Check IA32_FEATURE_CONTROL bit 2 = 1?

• SetupVMX()
– ReadMsr IA32_VMX_BASIC for VMXON region size

– And VMX revision ID

– AllocateContiguousMemory(size)

– Set Revision ID in VMXON region

– Call VMXON with 64-bit Physical Address

• Download sample solution to VMXMSR and VMXON labs

201237

Possible mistakes/gotchas

• Forget to RET in your assembly PROC

• Forget to set VMX Revision ID in VMXON region

• Make sure you use the right MSR index numbers

• x64 calling convention

• Multiple logical processors (have to loop on them and
perform these steps on each to be kosher)
– KeSetSystemAffinityThreadEx

201238

Multi-processor virtualization

• Symmetric VMM is most common
– Same effective VMM on all logical processors

– It’s what we’ve been talking about thus far

• Asymmetric configuration is possible though
– i.e., VMMs with different VMX revision id, exit controls

– The benefits might be to allow for migration of VMs
across a cluster

– Out of scope for this class. Perhaps a topic for an
advanced class

201239

VMM Design Considerations (1)

• Multi-processor
– symmetric vs. asymmetric

– Locking mechanisms to protect shared VMM data
– Meta information about multiple VMCSs for example and

state tracking

– If your VMM is for debugging, info about task, etc…

– Don’t forget we’re virtualizing on multiple logical cores

201240

VMM Design Considerations (2)

• Also depends on your design goals
– Are you Hyper-jacking? (i.e., for debug, bluepill)

– Or hosting multiple guest OS types? Like VMware

– Do you want to fully support guest VM self-debug?
– Is your goal to do debugging on malware?

– Does speed matter?

– Are you going to migrate VMs to other hardware
platforms? Are you an IaaS provider?

201241

Multi-processor initialization

201242

for (i = 0; i < KeNumberProcessors; i++)
 {
 OldAffinity = KeSetSystemAffinityThreadEx((KAFFINITY) (1 << i));
 OldIrql = KeRaiseIrqlToDpcLevel();
 _StartVirtualization();
 KeLowerIrql(OldIrql);
 KeRevertToUserAffinityThreadEx(OldAffinity);
 }

KeNumberProcessors

• It’s bound to the total number of logical processors

• Obsolete and shouldn’t be used anymore… but it
still works

• “In Windows Server 2008, code that can determine
the number of processors must use
KeQueryActiveProcessors”

• Read the MSDN reference below on alternative

201243

http://msdn.microsof.com/en-us/library/windows/hardware/ff552975%28v=vs.85%29.aspx

KeSetSystemAffinityThreadEx

• Sets the system affinity of the current thread
– Parameter is actually a set of possible processors

– In our case we pick a specific one (i.e., 1 << i)

• Returns either the previous system affinity of the
current thread, or zero to indicate that there was no
previous system affinity

• Callers should save the return value and later pass
this value to the KeRevertToUserAffinityThreadEx
routine to restore the previous affinity mask.

201244

KeRaiseIrqlToDpcLevel

• Raises the hardware priority to IRQL =
DISPATCH_LEVEL, thereby masking off
interrupts of equivalent or lower IRQL on the
current processor.

• Caller should save the returned IRQL value
and restore the original IRQL as quickly as
possible by passing this returned IRQL in a
subsequent call to KeLowerIrql

201245

Managing Multiple VMXON regions

typedef struct _VIRT_CPU {
PVOID Self,

PVOID VMXON_va;

PHYSICAL_ADDRESS VMXON_pa;

PVOID VMCS_va;

PHYSICAL_ADDRESS VMCS_pa;

…

} VIRT_CPU, *PVIRT_CPU;

201246

VMXOFF

201247

Wax on, wax off…

201248

VMCLEAR

201249

VMPTRLD

201250

VMControlStructure
• Offset 0: VMCS revision ID

– Same as VMXON region

• Offset 4: VMX abort indicator

• Offset 8: VMCS data (later)

• Size determined by IA32_VMX_BASIC MSR
– Same as VMXON region

• Once allocated, not to be directly accessed (except for
putting the revision ID)

• Instead, use VMREAD/VMWRITE with desired field
encodings.

201251

VMWRITE

201252

VMX Field Encodings
• Every field of the VMCS is

encoded by a 32-bit value

• APPENDIX B for complete
description

• For 64-bit fields using the “high”
access type
– A VMREAD returns the value of bits

63:32 of the field in bits 31:0 of the
destination operand

– in 64-bit mode, bits 63:32 of the
destination operand are zeroed out

201253

Bit
positon

Contents

0 Access type (0 = full; 1 =
high);
must be full for 16-bit, 32-
bit, and natural- width
fields

9:1 Index

11:10 Type:
 0: control
 1: read-only data
 2: guest state
 3: host state

12 Reserved to 0

14:13 Width
 0: 16-bit
 1: 64-bit
 2: 32-bit
 3: natural width

31:15 Reserved to 0

Sample VMCS Field Encodings in C
/* VMCS Encodings */

enum {

 GUEST_ES_SELECTOR = 0x00000800,

 GUEST_CS_SELECTOR = 0x00000802,

 GUEST_SS_SELECTOR = 0x00000804,

 GUEST_DS_SELECTOR = 0x00000806,

 GUEST_FS_SELECTOR = 0x00000808,

 GUEST_GS_SELECTOR = 0x0000080a,

 GUEST_LDTR_SELECTOR = 0x0000080c,

 GUEST_TR_SELECTOR = 0x0000080e,

 HOST_ES_SELECTOR = 0x00000c00,

 HOST_CS_SELECTOR = 0x00000c02,

 HOST_SS_SELECTOR = 0x00000c04,

 HOST_DS_SELECTOR = 0x00000c06,

 HOST_FS_SELECTOR = 0x00000c08,

 HOST_GS_SELECTOR = 0x00000c0a,

 HOST_TR_SELECTOR = 0x00000c0c,

 IO_BITMAP_A = 0x00002000,

 IO_BITMAP_A_HIGH = 0x00002001,

 IO_BITMAP_B = 0x00002002,

 IO_BITMAP_B_HIGH = 0x00002003,

 MSR_BITMAP = 0x00002004,

 MSR_BITMAP_HIGH = 0x00002005,

 VM_EXIT_MSR_STORE_ADDR = 0x00002006,

 VM_EXIT_MSR_STORE_ADDR_HIGH = 0x00002007,

 VM_EXIT_MSR_LOAD_ADDR = 0x00002008,

 VM_EXIT_MSR_LOAD_ADDR_HIGH = 0x00002009,

...

};

201254

Example VMWRITE

• VMREAD/VMWRITE operate on the current
VMCS
– Only one current VMCS at a time

201255

set guest RIP to 0x12345678 (pure assembly)
mov rax, 0681Eh /* GUEST_RIP VMCS field*/
mov rbx, 12345678h
vmwrite rax, rbx

VMLAUNCH/VMRESUME

201256

• The VMLAUNCH instruction requires a VMCS whose launch
state is “clear”

• The VMRESUME instruction requires a VMCS whose launch
state is “launched”

VM “Launch” State

• The launch state of a VMCS determines which
VM-entry instruction should be used with that
VMCS: the VMLAUNCH instruction requires a
VMCS whose launch state is “clear”; the
VMRESUME instruction requires a VMCS whose
launch state is “launched”.

• In other words, if the launch state of the
current VMCS is “clear,” VMLAUNCH changes
the launch state to “launched.”

201257

VM “Launch” State (2)

201258

VMREAD

201259

VMPTRST

201260

VM Read/Write in our VMM

201261

_ReadVMCS PROC
 vmread rdx, rcx
 mov rax, rdx
 ret
_ReadVMCS ENDP

_WriteVMCS PROC
 vmwrite rcx, rdx
 ret
_WriteVMCS ENDP

In our amd64/amd64.asm:

And Back in C

• Our prototype functions for binding assembly
functions

• ULONG64 _ReadVMCS(ULONG32 Encoding);

• VOID _WriteVMCS(ULONG32 Encoding,
ULONG64 Value);

201262

Lab: Introducing Virtdbg

• Purpose
– Familiarize yourself with the code base

– Prepare to make some edits to the code

• Steps
– Read control flow RTF document

– Navigate the functions in Visual Studio

– Optional: Fill in any missing control flow notes in the
RTF document

201263

VMCS Data Organization

• Organized into 6 categories
1. Guest state

2. Host state

3. Execution control fields

4. Exit control fields

5. Entry control

6. VM exit info

201264

VMCS Data Organization

• Organized into 6 categories
1. Guest state

2. Host state

3. Execution control fields

4. Exit control fields

5. Entry control

6. VM exit info

201265

VMCS Guest State

• Describes the values of the registers the CPU will
have afer next VMEntry

• Divided into Register and Non-register state

• Use of certain fields depends on the “1-setting” of
various VM controls
– E.g., 1-setting of EPT control PDPTE0 – PDPTE3

• VMCS link pointer is unused and reserved to
FFFFFFFF_FFFFFFFFh

201266

VMCS: Guest Register State

201267

CR{0,3,4}
CR{0,3,4}

CR{0,3,4}
DR7

RSP

RFLAGS

RIP

TR

Selector

Base
addr

Segment
limit

Access
rights

LDTR

Selector

Base
addr

Segment
limit

Access
rights

{C,S,D,E,F,G}S

Selector

Base
addr

Segment
limit

Access
rights

{C,S,D,E,F,G}S

Selector

Base
addr

Segment
limit

Access
rights

{C,S,D,E,F,G}S

Selector

Base
addr

Segment
limit

Access
rights

{C,S,D,E,F,G}S

Selector

Base
addr

Segment
limit

Access
rights

{C,S,D,E,F,G}S

Selector

Base
addr

Segment
limit

Access
rights

{C,S,D,E,F,G}S

Selector

Base
addr

Segment
limit

Access
rights

64-bits each

Table 24-2. Format of
Access Rights

MSRs

IA32_DEBUGCTL

IA32_SYSENTER_CS (32b)

IA32_SYSENTER_ESP

IA32_SYSENTER_EIP

IA32_PERF_GLOBAL_CTRL*

IA32_PAT*

IA32_EFER*

SMBASE

* - based on 1-setting
of respective VM
control

32-bits each

SMBASE

• Contains the base address of the logical
processor’s SMRAM image

• SMM mode related
– Out of scope of this class

• Should be able to basically ignore it as far as
initialization

201268

VMCS Guest Segments

• Access rights come from the segment descriptor. Base
addr + Segment Limit + Access rights form the
“descriptor cache” of each segment register.

• These data are included in the VMCS because it is
possible for a segment register’s descriptor cache to be
inconsistent with the segment descriptor in memory (in
the GDT or the LDT) referenced by the segment
register’s selector.

201269

Grabbing/Setting the Guest segments

• In practice for our toy VMM we will grab the
host’s existing values and insert them into our
VMCS data structure with VMWRITEs

• We will call some functions (written in our
assembly file) from our C code to grab the
current values
– i.e. CR0, CR3, CR4 and {C,S,D,E,F,G}S

201270

Segment access rights format

201271

Bit Positon(s) Field

3:0 Segment type

4 S – Descriptor type (0=system, 1=code or data)

6:5 DPL – descriptor priv. level

7 P – Segment present

11:8 Reserved

12 AVL – Available for use by system software

13 Reserved (except for CS)
L – 64-bit mode actve (for CS only)

14 D/B – Default operaton size (0=16-bit segment, 1=32-bit
segment)

15 G – Granularity

16 Segment unusable (0=usable, 1=unusable)

31:17 Reserved

Once again in C … with feeling!

201272

typedef union
{
 USHORT UCHARs;
 struct
 {
 USHORT type:4; /* 0; Bit 40-43 */
 USHORT s:1; /* 4; Bit 44 */
 USHORT dpl:2; /* 5; Bit 45-46 */
 USHORT p:1; /* 7; Bit 47 */
 // gap! (this will be explained later)
 USHORT avl:1; /* 8; Bit 52 */
 USHORT l:1; /* 9; Bit 53 */
 USHORT db:1; /* 10; Bit 54 */
 USHORT g:1; /* 11; Bit 55 */
 USHORT Gap:4;
 } fields;
} SEGMENT_ATTRIBUTES;

This is a copy of bit 40:47 & 52:55 of
the segment descriptor

Lab: Guest segments in Virtdbg

• Locate in virtdbg the guest segment
initialization code

• Create high-level write-up on what you think
is happening

• Everyone compare notes
– Learn from each other

201273

VMCS: Guest Non-register State

201274

Activity State*

Interruptibility
State

32 bits

Value Definiton

0 Active

1 HLT

2 Shutdown

3 Wait-for-SIPI

… …

VMX
preemption
timer value*

Pending debug exceptions

VMCS link pointer

64 bits

PDPTE0*

PDPTE1*

PDPTE2*

PDPTE3*

* - based on 1-setting of
respective VM control

value that the VMX-
preemption timer will
use following the next

VM entry

See Table
24-3

VMCS Data Organization

• Organized into 6 categories
1. Guest state

2. Host state

3. Execution control fields

4. Exit control fields

5. Entry control

6. VM exit info

201275

VMCS Host State Area

• Tells the CPU how to return to the VMM afer
a VMExit

• Consists of register states and MSRs
– Again some of the MSRs depend on “1-setting” of

VM controls

201276

VMCS: Host State Area

201277

CR{0,3,4}
CR{0,3,4}

CR{0,3,4} RSP

RIP

64 bits each

MSRs

IA32_SYSENTER_CS (32)

IA32_SYSENTER_ESP

IA32_SYSENTER_EIP

IA32_PERF_GLOBAL_CTRL*

IA32_PAT*

IA32_EFER*

* - based on 1-setting
of respective VM
control

GDTR

IDTR

Base
addr

FS

Selector

Base
addr

GS

Selector

Base
addr

TR

Selector

Base
addr

Selector
Selector

Selector
{C,S,D,E}S

Selector

VMCS Data Organization

• Organized into 6 categories
1. Guest state

2. Host state

3. Executon control fields

4. Exit control fields

5. Entry control

6. VM exit info

201278

Reserved controls/default settings
• Certain VMX controls are reserved and must be set to

a specific value
– The specific value to which a reserved control must be set is

its default setting

• Discover the default setting of a reserved control by
consulting the appropriate VMX capability MSR

• Partitioned into 3 sets
– Always-flexible, Default0, Default1

• Bit 55 of the IA32_VMX_BASIC MSR is used to indicate
whether any of the default1 controls may be 0

201279

Memory virtualization

• Volume 3 Section 31.3 in the manual

• Can get complex to implement.

• Choices
– Brute Force

– Extended Page Table (EPT) + VPID = Virtual TLB

201280

Memory Virtualization: Brute Force

• Intercept all CR3 load/store

• Use shadow page tables
– You tell me… what do you think a shadow page table

is?

• Ensure all guest manipulation of guest-page
hierarchy remains consistent

• Poor performance, doesn’t leverage hardware
mechanisms (EPT/VPID)

201281

Memory Virtualization: Virtual TLB

201282

VMCS: Execution Control

• Controls what is not allowed to execute in the VM
(VMX non-root) without a VMExit, i.e.:
– Load/store MSRs

– I/O access in/out

– Load/store of CR3

– Read shadows for CR0/CR4

– Interrupts (i.e., INT3)

– {RDTSC, TSC MSR} offsetting

– More…

201283

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

201284

Execution controls not discussed

• APIC access
– Plays a role in power management

– Allow guest to be alerted to AC->battery?

• Executive VMCS pointer
– Plays a role with SMM

– We don’t know enough about SMM, save for another
class.

• PAUSE-loop exiting
– Deals with guest using PAUSE instruction in a loop

201285

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

201286

Pin-based Execution Controls

• One 32-bit value that controls asynchronous
events in VMX non-root
– External-interrupt exiting (bit 0)

– Non maskable interrupt (NMI) exiting (bit 3)

– Virtual NMIs (bit 5)

– VMX preemption timer (bit 6)

• Supported settings governed by
IA32_VMX_PINBASED_CTLS MSR

201287

MSR: IA32_VMX_PINBASED_CTLS
(index 0x481)

• Reports on the allowed settings of most of the pin-based VM-
execution controls

• Bits 31:0 indicate the allowed 0-settings of these controls.
– VM entry allows control X (i.e. bit X of the pin-based VM-execution

controls) to be 0 if bit X in the MSR is cleared to 0;

– If bit X in the MSR is set to 1, VM entry fails if control X is 0.

• Bits 63:32 indicate the allowed 1-settings of these controls.
– VM entry allows control X to be 1 if bit 32+X in the MSR is set to 1;

– If bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

201288

Allowed 1-settings Allowed 0-settings

64-bits

 63 32 31 0

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

201290

Processor-based Execution Controls

• Two 32-bit values
– Primary and Secondary controls

• Controls handling of synchronous events
– i.e., events caused by execution of specific

instructions

• See Table 24-6, 24-7 for full description
(partial description follows)

201291

MSR: IA32_VMX_PROCBASED_CTLS
(index 0x482)

• Reports on the allowed (based on h/w support) settings of most of
the primary processor-based VM-execution controls

• Bits 31:0 indicate the allowed 0-settings of these controls.
– VM entry allows control X (i.e. bit X of the pin-based VM-execution

controls) to be 0 if bit X in the MSR is cleared to 0;

– If bit X in the MSR is set to 1, VM entry fails if control X is 0.

• Bits 63:32 indicate the allowed 1-settings of these controls.
– VM entry allows control X to be 1 if bit 32+X in the MSR is set to 1;

– If bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

201292

Allowed 1-settings Allowed 0-settings

64-bits

 63 32 31 0

Processor-based Execution Controls

• Primary (partial description)
– 1-setting of ‘use time stamp counter offsetting’ (bit 3)

– RDTSC exiting control (bit 12)

– CR3 load exiting (bit 15), CR3 store (bit 16)

– Activate secondary controls (bit 31)

– 1-setting of ‘use I/O bitmaps’ (bit 25)

– 1-setting of ‘use MSR bitmaps’ (bit 28)

– Activate secondary controls (bit 31)

• Secondary (partial description)
– Enable EPT (bit 1)

– Enable VPID (bit 5)

– Enable VM functions (bit 13)

201293

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Excepton bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

201294

Exception Bitmap
• 32-bit field

– One bit for each exception

• When an exception occurs (in guest)
– If the bit is 0 in bitmask
– Exception delivered through guest IDT normally

– Otherwise
– Causes VMExit

• E.g., INT3 exiting
– Set bit 3 in Exception Bitmap

201295

Exception Bitmap: Page faults

• Special case for page faults (vector 14)

• If sofware desires VM exits on all page faults, it can set
bit 14 in the exception bitmap to 1 and set the page-
fault error-code mask and match fields each to
0x00000000.

• If sofware desires VM exits on no page faults, it can
set bit 14 in the exception bitmap to 1, the page-fault
error-code mask field to 0x00000000, and the page-
fault error-code match field to 0xFFFFFFFF.

201296

page-fault error-code
mask/match fields

• VMRead/VMWrite VMCS field 0x4006 to get
Page-fault error-code mask value

• VMRead/VMWrite VMCS field 0x4008 to get
Page-fault error-code match value

201297

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

201298

I/O Bitmap Addresses

• Two 4K bitmaps (A and B)

• A contains one bit for each I/O port in range 0000h
through 7FFFh

• B contains one bit for each I/O port in range 8000h
through FFFFh

• Used only with “1-setting” of “use I/O bitmaps”
control
– If bitmaps corresponding to a port is 1, execution of an

I/O instruction causes a VM exit

201299

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

2012100

Time-Stamp Counter Offset
• Controlled by “1-setting” of “use TSC offsetting” option in Primary

Processor base control (bit 3)

• Additionally controls RDMSR of IA32_TIME_STAMP_COUNTER

• Signed addition of signed TSC offset and TSC

• Possibly eliminates need for 1-setting of RDTSC-exiting:
– potential performance optimization

• TSC Offsetting is page 1337 of my Intel manual. Yeah, it’s pretty leet.

2012101

The Time-Stamp Counter

• 64-bit MSR first introduced in the Pentium

• It increments once every CPU clock-cycle,
starting from 0 when power is turned on

• “It won’t overflow for at least ten years”
(2006*)

• Unprivileged programs (ring3) normally can
access, it via the RDTSC instruction

* http://cs.usfca.edu/~cruse/cs630f06/lesson27.ppt

Using the TSC

2012103

EDX EAX

64-bits

time0 dq 0 ; saves starting value from the TSC
time1 dq 0 ; saves concluding value from TSC

; how you can measure CPU clock-cycles in a code-fragment
rdtsc ; read the Time-Stamp Counter
mov time0+0, eax ; save least-significant longword
mov time0+4, edx ; save most-significant longword
; <Your code-fragment to be measured goes here>
rdtsc ; read the Time-Stamp Counter
movl time1+0, eax ; save least-significant longword
movl time1+4, edx ; save most-significant longword
; now subtract starting-value ‘time0’ from ending value ‘time1’

Modified to masm from: http://cs.usfca.edu/~cruse/cs630f06/lesson27.ppt

 63 32 31 0

The TSC as an MSR

• The Time-Stamp Counter is MSR number 0x10

• To write a new 64-bit value into the TSC, you
load the desired 64-bit value into the EDX:EAX
register-pair, you put the MSR ID-number
0x10 into register ECX, then you execute
wrmsr
– To modify a guest TSC use the appropriate VMCS

field with VMWRITE

Lab: cpuid hooking

• Purpose:
– Show that specific VM exit conditions are observed by the

VMM

– Hook cpuid and return our own CPU string

• Steps
– Modify virtdbg to hook cpuid leaf 0 (eax=0) and return

something other than GenuineIntel in appropriate registers

– Run CPUID either in ring 0 or ring 3 to get the cpuid eax=0
brand string

2012105

• sc stop virtdbg

2012106

Lab: TSC Offsetting

• Modify Virtdbg to perform TSC offsetting
– Check your work by running RDTSC in userspace

or kernel space

– Does it work as you expected?

2012107

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

2012108

Read Shadows

• Reads of CR0 and CR4 don’t cause exits.

• Instead, these use “shadows” configured by
the VMM in the respective guest’s VMCS with
the guest-expected values.
– Why? (poll class)

2012109

CR0/CR4 Refresher

• CR0 (64 bits)
– Controls things like paging, memory cache (and

write-back), page write protecton, protected
mode

• CR4 (64 bits)
– Controls things like Virtual-8086 mode, enabling

SSE, enabling performance counters, PAE paging,
page size

2012110

Masks and Shadows for CR0/CR4
• Controls execution of instructions that read or modify CR4/CR0

– i.e., CLTS, LMSW, MOV to/from CR, and SMSW

• Host/guest mask determines who “owns” that bit (guest or host) in CR0/CR4

• For bits set to 1 in the mask, these are owned by host
– Guest bit-setting events
– Bits set in the mask that differ from respective shadow value will cause VMExit

– Guest bit-read event for bit in bitmask will read from corresponding shadow register

• For bits set to 0 in the mask, these are owned by guest
– Load/store are unhindered

2012111

Cloak and Dagger

2012112

• Where a bit is masked, the shadow bit
appears

• Where a bit is not masked, the actual bit
appears

 actual:

 mask:

 shadow:

 apparent:

1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

2012113

Memory Virtualization (1)

• Provides guest sofware with contiguous “guest
physical” address space starting at zero and extending
to the maximum address supported by the guest virtual
processor’s physical address width

• The VMM utilizes guest-physical-to-host-physical
address mapping to locate all or portions of the guest
physical address space in host memory

• The VMM requires the guest-to-host memory mapping
to be at page granularity

2012114

Memory Virtualization (2)
• Memory virtualization is accomplished using a combination of setting

VM exit conditions on specific instructions (i.e. mov to/from cr3)
and/or with an Extended Page Table (EPT) mechanism possibly assisted
by a translation caching mechanism called Virtual Processor Identifier
(VPID)

• For Bluepill we don’t need to use some of these mechanisms… though
it may make sense to employ some mechanisms to protect the VMM
memory from the guest

• More details on memory virtualization will be discussed later. (Part 3)

2012115

CR3 Target Controls
• CR3-target values

– Allows for an exception to the rule of exiting for all
MOV to/from CR3. Obviously for performance.

– Does not cause a VM exit if its source operand
matches one of these values.

• IA32_VMX_MISC bits 24:16 indicate the # of
CR3-target values supported by the processor
– In practice most processors only support 4 targets

– Intel manual is confusing here because they assume 4, but
recommend using the IA32_VMX_MISC MSR later.

2012116

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

2012117

MSR Bitmaps
• Processor must support 1-setting of the “use MSR bitmaps” VM-

execution control

• Partitioned into four 1KB contiguous blocks
1. Read bitmap for low MSRs

2. Read bitmap for high MSRs

3. Write bitmap for low MSRs

4. Write bitmap for high MSRs

• If the bitmaps are used, an execution of RDMSR or WRMSR causes
a VM exit if the value of RCX is in neither of the ranges covered by
the bitmaps

• Or if the appropriate bit in the MSR bitmaps (corresponding to the
instruction and the RCX value) is 1

• VMCS field 0x2004 stores the base address of the MSR bitmaps

2012118

VMCS: Execution Control Fields

• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

• EPTP

2012119

Extended Page Table Pointer (EPTP)

• Contains the base address of the EPT PML4
table

• VMCS field encoding 0x201A

2012120

Do you EPT?
• The EPT paging structures are similar to those used to translate

linear addresses for 64-bit paging

• When the “enable EPT” VM-execution control is 1, the identity of
guest-physical addresses depends on whether paging in the
guest is enabled
– If CR0.PG = 0, each linear address is treated as a guest-physical address.

– If CR0.PG = 1, guest-physical addresses are those derived from the
contents of control register CR3 and the guest paging structures.

• A logical processor uses EPT to translate guest-physical addresses
only when those addresses are used to access memory.

2012121

EPT Translation (1)

• If CR0.PG = 1, the translation of a linear
address to a physical address requires
multiple translations of guest-physical
addresses using EPT

2012122

EPT Translation (2)

• Bits 31:22 of the linear address select an entry
in the guest page directory located at the
guest-physical address in CR3. The guest-
physical address of the guest page-directory
entry (PDE) is translated through EPT to
determine the guest PDE’s physical address.

2012123

EPT Translation (3)

• Bits 21:12 of the linear address select an entry
in the guest page table located at the guest-
physical address in the guest PDE. The guest-
physical address of the guest page-table entry
(PTE) is translated through EPT to determine
the guest PTE’s physical address.

2012124

EPT Translation (4)

• Bits 11:0 of the linear address is the offset in
the page frame located at the guest-physical
address in the guest PTE. The guest-physical
address determined by this offset is translated
through EPT to determine the physical
address to which the original linear address
translates.

2012125

VMCS: Execution Control Fields
• Pin-based (asynchronous) controls

• Processor-based (synchronous) controls

• Exception bitmap

• I/O bitmap addresses

• Timestamp Counter offset

• CR0/CR4 guest/host masks

• CR3 targets

• MSR Bitmaps

• EPTP

• VPID

2012126

Virtual Processor Identifier (VPID)

• Used to cache information for multiple linear-
address spaces
– “translatons, which are mappings from linear

page numbers to physical page frames,

– and paging-structure caches, which map the
upper bits of a linear page number to information
from the paging-structure entries used to
translate linear addresses…”

2012127

Ref: 28.3.1 Information That May Be Cached

Translations

• Linear mappings
– “Each of these is a mapping from a linear page

number to the physical page frame to which it
translates, along with information about access
privileges and memory typing.”

• Guest-physical mappings
– Guest-physical translations

– Guest-physical paging-structure-cache entries

2012128

More VPID

• The current VPID is 0000H in the following
situations:
– Outside VMX operation. (This includes operation in

system-management mode under the default
treatment of SMIs and SMM with VMX operation;
see Section 29.14.)

– In VMX root operation.

– In VMX non-root operation when the “enable
VPID” VM-execution control is 0.

2012129

VMCS Data Organization

• Organized into 6 categories
1. Guest state

2. Host state

3. Execution control fields

4. Exit control fields

5. Entry control

6. VM exit info

2012130

VM Exits (preface)
• VM exits have significant overhead

1. Begin by recording information about the nature of and reason for
the VM exit in the VM-exit information fields (details on this later)

2. Each field in the guest-state area of the VMCS is written with the
corresponding component of current processor state.

3. Save guest MSR values

4. Load host state

5. Load host MSRs

• A problem encountered during a VM exit leads to a VMX abort

2012131

VMCS: Exit Control Fields

• VM Exits
– Occur in response to certain instructions and events

in VMX non-root operation

– i.e., what to load and discard in the case of a VM Exit

• Control fields consist of 2 groups
1. VM Exit controls

2. VM Exit controls for MSRs

2012132

VM Exit Controls
• 32-bit vector

– Save debug controls (bit 2)
– Whether DR7/IA32_DEBUGCTL are saved on VM exit

– Host addr-space size (bit 9)
– Whether VM exits occur into 64-bit mode host

– Load IA32_PERF_GLOBAL_CTRL (bit 12)
– Whether IA32_PERF_GLOBAL_CTRL is loaded on VM exit

– Save VMX-preemption timer value (bit 22)
– Whether pre-emption timer is saved on exit

2012133

2012134

Bit Positon Name Descripton

2 Save debug controls DR7 and IA32_DEBUGCTL_MSR are saved on VM exit?

9 Host addr space size 64-bit or 32-bit on VM exit (in VMX root mode)

12 Load
IA32_PERF_GLOBAL_CTR

IA32_PERF_GLOBAL_CTRL MSR saved on VM exit?

15 Ack. Interrupt on exit affects VM exits due to external interrupts (see Table
24-10)

18 Save IA32_PAT IA32_PAT MSR saved on VM exit?

19 Load IA32_PAT IA32_PAT MSR loaded on VM exit?

20 Save IA32_EFER IA32_EFER MSR saved on VM exit?

21 Load IA32_EFER IA32_EFER MSR loaded on VM exit?

22 Save VMX-preemption
timer value

VMX-preemption timer saved on VM exit?

VM Exit Controls

*All other bits are reserved, some to 0 and some to 1. Consult the VMX
capability MSRs IA32_VMX_EXIT_CTLS and IA32_VMX_TRUE_EXIT_CTLS

VM Exit Controls for MSRs (1)

• Guest and Host will make use of MSRs
– Business as usual

• And we can register with the VMM that some MSR reads need
not perform VM exits

• But assuming there is a VM exit, i.e., in the case that we want
to intercept that MSR read event
– Then there needs to be a mechanism to store the guest’s current

MSRs (before exit) and re-load the host’s MSRs (so that the VMM
can do its job)

– And later when there is a VM entry we will have shelved the guest’s
MSRs and it will “do the right thing…”

2012135

VM Exit Controls for MSRs (2)
• A VMM may specify lists of MSRs to be stored

and loaded on VM exits/entry

• Uses the VM-exit MSR-store-address and the
VM-exit MSR-store-count exit control fields

• Each data entry is 16 bytes and expressed by
– Bits 31:0 store the MSR index

– Bits 63:32 are reserved (unclear whether to 0 or 1)

– Bits 127:64 store the MSR data

2012136

MSR data Reserved MSR index

127 64 63 32 31
 0

VM Exit Controls for MSRs

• VM-exit MSR-store count (32-bit)
– Specifies the # of MSRs to be stored on VM exit

• VM-exit MSR-store address (64-bit)
– Physical address of the VM-exit MSR-store area

• VM-exit MSR-load count (32-bit)
– Contains the # of MSRs to be loaded on VM exit

• VM-exit MSR-load address (64-bit)
– Physical address of the VM-exit MSR-load area

2012137

VMCS Data Organization

• Organized into 6 categories
1. Guest state

2. Host state

3. Execution control fields

4. Exit control fields

5. Entry control fields

6. VM exit info

2012138

VMCS: Entry Control Fields

• 32-bit vector that controls the basic operation
of VM entries

• VMCS field 0x4012

• 3 groups
1. Entry controls

2. Entry controls for MSRS

3. Entry controls for Event Injection

2012139

Entry controls

2012140

Bit
Positon

Name Descripton

2 Load debug controls DR7 and IA32_DEBUGCTL_MSR are saved on VM
exit?

9 IA-32e mode guest 64-bit mode guest? (0=no, 1=yes)

10 Entry to SMM Put into SMM mode on entry? (0=no, 1=yes)

11 Deactivate dual-monitor
treatment

See Section 29.15.7. Set to 0 for VM entry
outside SMM (for our purpose)

13 Load
IA32_PERF_GLOBAL_CTRL

IA32_PERF_GLOBAL_CTRL MSR is loaded on VM
entry?

14 Load IA32_PAT IA32_PAT MSR loaded on VM entry?

15 Save IA32_EFER IA32_EFER MSR saved on VM entry?

Entry controls for MSRs

• Similar to exit controls for VM Exit.
– Except use the VM entry load count and address

– VM-entry MSR load count: 0x4014 (VMCS field)

2012141

VM Event Injection (1)

• VMX operation allows injecting interruptions to a guest
virtual machine through the use of VM-entry interrupt-
information field in VMCS.
– Generate event on next VMEnter

– Happens afer all guest state is loaded

• Allows injection of
– External interrupts

– Non-maskable interrupts

– Exceptions (e.g., page faults)

– Traps

2012142

VM Event Injection (2)

• If the interrupt-information field indicates a
valid interrupt, exception or trap event upon
the next VM entry; the processor will use the
information in the field to vector a virtual
interruption through the guest IDT afer all
guest state and MSRs are loaded.

2012143

Entry controls for Event Injection

• VM entry can be configured to conclude by
delivering an event through the IDT
– afer all guest state and MSRs have been loaded

• Use the VM-entry interruption-information
field (VMREAD/VMWRITE 0x4016)

2012144

VM Function Controls

2012145

VMCS Data Organization

• Organized into 6 categories
1. Guest state

2. Host state

3. Execution control fields

4. Exit control fields

5. Entry control

6. VM exit info

2012146

VM Exit (1)

• All VM exits load processor state from the host-
state area of the VMCS that was the controlling
VMCS before the VM exit.
– This state is checked for consistency while being

loaded. Because the host-state is checked on VM
entry, these checks will generally succeed.

– Failure is possible only if host sofware is incorrect or if
VMCS data in the VMCS region in memory has been
written by guest sofware (or by I/O DMA) since the
last VM entry.

2012147

VM Exit info

• The VM-exit information fields provide details
on VM exits due to exceptions and interrupts.
This information is provided through the exit-
qualificaton, VM-exit-interrupton-
informaton, instructon-length and inter-
rupton-error-code fields.

2012148

VM Exit info field encodings

enum {

…

VM_EXIT_REASON = 0x00004402,

VM_EXIT_INTR_INFO = 0x00004404,
VM_EXIT_INTR_ERROR_CODE = 0x00004406,

VM_EXIT_INSTRUCTION_LEN = 0x0000440c,

EXIT_QUALIFICATION = 0x00006400,

…

}

2012149

VMCS: Exit Information fields

• Basic info
– Exit reason (32-bits)

– Exit qualification (64-bits)

– Guest Linear Address (64-bits)

– Guest Physical Address (64-bits)

• Vectored exit info

• Event delivery exits

• Instruction execution exits

• Error field

2012150

VM Exit Error Handling

• Examples
– There was a failure on storing guest MSRs.

– There was failure in loading a PDPTR.

– The controlling VMCS has been corrupted

– There was a failure on loading host MSRs

– Machine-check event

2012151

VMM Error Handling

• Error conditions may occur during VM entries and VM exits
and a few other situations

• Two basic strategies for error handling in VMM
– Basic error handling: in this approach the guest VM is treated as any

other thread of execution. If the error recovery action does not
support restarting the thread afer handling the error, the guest VM
should be terminated.

– Machine Check Architecture virtualization. In this approach, the
VMM virtualizes the MCA events and hardware. This enables the
VMM to intercept MCA events and inject an MCA into the guest VM.
The guest VM then has the opportunity to attempt error recovery
actions, rather than being terminated by the VMM.

• MCA virtualization is out of scope of this class

2012152

VMX Errors

2012153

Intel Reference
Volume 2B
Section 5.4

Defines 28 error codes
(not all shown here)

VM Entry

2012154

MOV rax,0681eh # RIP VMCS identifier
MOV rbx,0 #
VMWRITE rax,rbx # afer next successful VM entry, guest will start with RIP=0

Lightning review of Debugging

• Registers hold addresses of memory and I/O
of BPs/state
– 8 registers, 4 for BPs (DR0-3), Debug Status (DR6),

Debug Status (DR7)

• MSRs monitor branches, interrupts, and
exceptions

2012155

Debug Registers Review
• Most debuggers also have support for something called a

“hardware breakpoint”, and these breakpoints are more flexible
than software breakpoints in that they can be set to trigger
when memory is read or written, not just when it’s executed.
However only 4 hardware breakpoints can be set.

• There are 8 debug registers DR0-DR7

– DR0-3 = breakpoint linear address registers

– DR4-5 = reserved (unused)

– DR6 = Debug Status Register

– DR7 = Debug Control Register

• Accessing the registers requires CPL == 0

– MOV DR, r32

– MOV r32, DR

2012156

Ref: http://opensecuritytraining.info/IntermediateX86.html (Part 4)

DR6 typedef
typedef union _DR6 {

 ULONG Value;

 struct {

 unsigned B0:1;

 unsigned B1:1;

 unsigned B2:1;

 unsigned B3:1;

 unsigned Reserved1:10;

 unsigned BD:1;

 unsigned BS:1;

 unsigned BT:1;

 unsigned Reserved2:16;

 };

} DR6, *PDR6;

2012157

DR7 typedef
typedef union _DR7 {

 ULONG Value;

 struct {

 unsigned L0:1;

 unsigned G0:1;

 unsigned L1:1;

 unsigned G1:1;

 unsigned L2:1;

 unsigned G2:1;

 unsigned L3:1;

 unsigned G3:1;

 unsigned LE:1;

 unsigned GE:1;

 unsigned Reserved1:3;

 unsigned GD:1;

 unsigned Reserved2:2;

 unsigned RW0:2;

 unsigned LEN0:2;

 unsigned RW1:2;

 unsigned LEN1:2;

 unsigned RW2:2;

 unsigned LEN2:2;

 unsigned RW3:2;

 unsigned LEN3:2;

 };

} DR7, *PDR7;

2012158

http://opensecuritytraining.info/IntermediateX86.html
http://opensecuritytraining.info/IntermediateX86.html
http://opensecuritytraining.info/IntermediateX86.html

Virt + Debugging: play nice? (1)

• Volume 3 section 31.2

• The VMM can program the exception-bitmap
to ensure it gets control on debug functions
– like breakpoint exceptions occurring while

executing guest code such as INT3 instructions

• The VMM may utilize the VM-entry event
injection facilities described to inject debug or
breakpoint exceptions to the guest.

2012159

Virt + Debugging: play nice? (2)

• The MOV-DR exiting control bit in the
processor-based VM-execution control field can
be enabled by the VMM to cause VM exits on
explicit guest access of processor debug
registers

• Guest sofware access to debug-related model-
specific registers (such as IA32_DEBUGCTL MSR)
can be trapped by the VMM through MSR
access control features

2012160

Virt + Debugging: play nice? (3)

• Debug registers such as DR7 and the
IA32_DEBUGCTL MSR may be explicitly modified
by the guest (through MOV-DR or WRMSR
instructions)

• Or modified implicitly by the processor as part of
generating debug exceptions.

• The current values of DR7 and the
IA32_DEBUGCTL MSR are saved to guest-state
area of VMCS on every VM exit.

2012161

Virt + Debugging: play nice? (4)
• DR7 and the IA32-DEBUGCTL MSR are loaded from

values in the guest-state area of the VMCS on every VM
entry.

• This allows the VMM to properly virtualize debug
registers when injecting debug exceptions to guest.

• Similarly, the RFLAGS register is loaded on every VM
entry (or pushed to stack if injecting a virtual event)
from guest-state area of the VMCS.

2012162

Lab: Virtdbg exceptions

2012163

End of Section

2012164

	Slide 1
	Slide 2
	Hardware Assisted Virtualization
	Hardware Assisted Virtualization (2)
	Basic Idea…
	BluePill/HyperJacking Techniques
	General Hardware VM Based Rootkit
	VMX introduces new x86 instructions
	High level VMX flow
	Introducing Chicken Syrup
	MSRs and VMX capabilities
	Relevant VMX MSRs (1)
	Relevant VMX MSRs (2)
	Relevant VMX MSRs (3)
	#define MSRs
	MSR: IA32_FEATURE_CONTROL (index 0x03a)
	IA32_FEATURE_CONTROL in C
	MSR: IA32_VMX_CR0_FIXED0/1 (index: 0x486, 0x487)
	MSR: IA32_VMX_CR4_FIXED0/1 (index: 0x488, 0x489)
	CR4 Typedef
	Enabling and Entering the Matrix
	VMXON
	VMXON vs VMCS region
	4KB-aligned Address stated different ways
	MSR: IA32_VMX_BASIC (index 0x480)
	IA32_VMX_BASIC as C struct
	Reading MSRs
	Lab: VMXMSR driver
	Allocating VMXON Region in Windows Driver
	Allocating VMXON Region in Windows Driver
	PHYSICAL_ADDRESS
	AllocateContiguousMemory
	Slide 33
	MEMORY_CACHING_TYPE
	Lab: VMXON!
	Lab Review
	Possible mistakes/gotchas
	Multi-processor virtualization
	VMM Design Considerations (1)
	VMM Design Considerations (2)
	Multi-processor initialization
	KeNumberProcessors
	KeSetSystemAffinityThreadEx
	KeRaiseIrqlToDpcLevel
	Managing Multiple VMXON regions
	VMXOFF
	Wax on, wax off…
	VMCLEAR
	VMPTRLD
	VMControlStructure
	VMWRITE
	VMX Field Encodings
	Sample VMCS Field Encodings in C
	Example VMWRITE
	VMLAUNCH/VMRESUME
	VM “Launch” State
	VM “Launch” State (2)
	VMREAD
	VMPTRST
	VM Read/Write in our VMM
	And Back in C
	Lab: Introducing Virtdbg
	VMCS Data Organization
	VMCS Data Organization
	VMCS Guest State
	VMCS: Guest Register State
	SMBASE
	VMCS Guest Segments
	Grabbing/Setting the Guest segments
	Segment access rights format
	Once again in C … with feeling!
	Lab: Guest segments in Virtdbg
	VMCS: Guest Non-register State
	VMCS Data Organization
	VMCS Host State Area
	VMCS: Host State Area
	VMCS Data Organization
	Reserved controls/default settings
	Memory virtualization
	Memory Virtualization: Brute Force
	Memory Virtualization: Virtual TLB
	VMCS: Execution Control
	VMCS: Execution Control Fields
	Execution controls not discussed
	VMCS: Execution Control Fields
	Pin-based Execution Controls
	MSR: IA32_VMX_PINBASED_CTLS (index 0x481)
	VMCS: Execution Control Fields
	Processor-based Execution Controls
	MSR: IA32_VMX_PROCBASED_CTLS (index 0x482)
	Processor-based Execution Controls
	VMCS: Execution Control Fields
	Exception Bitmap
	Exception Bitmap: Page faults
	page-fault error-code mask/match fields
	VMCS: Execution Control Fields
	I/O Bitmap Addresses
	VMCS: Execution Control Fields
	Time-Stamp Counter Offset
	The Time-Stamp Counter
	Using the TSC
	The TSC as an MSR
	Lab: cpuid hooking
	Slide 106
	Lab: TSC Offsetting
	VMCS: Execution Control Fields
	Read Shadows
	CR0/CR4 Refresher
	Masks and Shadows for CR0/CR4
	Cloak and Dagger
	VMCS: Execution Control Fields
	Memory Virtualization (1)
	Memory Virtualization (2)
	CR3 Target Controls
	VMCS: Execution Control Fields
	MSR Bitmaps
	VMCS: Execution Control Fields
	Extended Page Table Pointer (EPTP)
	Do you EPT?
	EPT Translation (1)
	EPT Translation (2)
	EPT Translation (3)
	EPT Translation (4)
	VMCS: Execution Control Fields
	Virtual Processor Identifier (VPID)
	Translations
	More VPID
	VMCS Data Organization
	VM Exits (preface)
	VMCS: Exit Control Fields
	VM Exit Controls
	VM Exit Controls
	VM Exit Controls for MSRs (1)
	VM Exit Controls for MSRs (2)
	VM Exit Controls for MSRs
	VMCS Data Organization
	VMCS: Entry Control Fields
	Entry controls
	Entry controls for MSRs
	VM Event Injection (1)
	VM Event Injection (2)
	Entry controls for Event Injection
	VM Function Controls
	VMCS Data Organization
	VM Exit (1)
	VM Exit info
	VM Exit info field encodings
	VMCS: Exit Information fields
	VM Exit Error Handling
	VMM Error Handling
	VMX Errors
	VM Entry
	Lightning review of Debugging
	Debug Registers Review
	DR6 typedef
	DR7 typedef
	Virt + Debugging: play nice? (1)
	Virt + Debugging: play nice? (2)
	Virt + Debugging: play nice? (3)
	Virt + Debugging: play nice? (4)
	Lab: Virtdbg exceptions
	End of Section

