Introduction to ARM (Acorn/
Advanced Risc Machines)

Acknowledgements

Prof. Rajeev Gandhi, Dept. ECE, Carnegie Mellon
University

Prof. Dave O’Hallaron, School of CS, Carnegie Mellon
University

Xeno Kovah
Dana Hutchinson
Dave Keppler
Jim lrving

Dave Weinstein
Geary Sutterfield

Co-requisites

* |ntro x86
* Intermediate x86 — would be very helpful

Book(s)

 “ARM System Developer's Guide: Designing
and Optimizing System Software” by Andrew
N. Sloss, Dominic Symes, and Chris Wright

Schedule

Day 1 Part 1
— Intro to ARM basics
— Lab 1 (Fibonacci Lab)
Day 1 Part 2
— More of ARMs features
— Lab 2 (BOMB Lab)
Day 2 Part 1
— ARM hardware features
— Lab 3 (Interrupts lab)
Day 2 Part 1.5
— GCC optimization
— Lab 4 (Control Flow Hijack Lab)
Day 2 Part 2
— Inline and Mixed assembly

— Atomic instructions
— Lab 5 (Atomic Lab)

DAY 1 PART 1

Introduction

Started as a hobby in microcontrollers in high
school with robotics

Background in software development and
electrical engineering

In school, took many courses related to micro
controllers and computer architecture

Small amount of experience with assembly

Obligatory XKCD

AN x64 PROCESSR 16 SLREAMING ALONG AT BLUONS OF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH IS

FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFED
ARSTRACTION T CREATE THE DRRUIN SYSTEM UNDERIXING
05 X, WHICH INTURN IS STRAINING ITSELF T0 RN FIREFROX
AND IT5 GECKO RENDERER, WHICH CREATES A RASH OBTECT
WHICH RENDERS [DZENS OF VIDED FRAMES EVERY SECOND

BECAUSE I WANTED TO SEE A CAT
JUMP INTO A R0X AND FALL OVER.

O !ZE I AMA GOD.

Source: http://xkcd.com/676/

Short Review

short ByteMyShorts[2] = {0x3210, 0x7654} in little endian?
Answer: 0x10325476
int NibbleMeInts = 0x4578 in binary, in octal? (no endianness involved)
Answers: 0b0100 0101 0111 1000
ObO 100 010 101 111 000
0042570 (Take 3 bits of binary and represent in decimal)
Two’s complement of 0x0113
Answer: OxFEED
What does the following code do? (Part of output from gcc at -03)

movl (%$rsi), %edx
movl $rdi) , %eax
xorl $edx, %eax
xorl $eax, %edx
xorl %$edx, %eax
movl %$edx, (%rsi)
movl %$eax, (%rdi)
ret

How can we optimize above for code size?

Could this macro be used for atomic operations?

We'll learn how and why

This turns into...

int main(void) {
printf(“Hello world\n”);
return O;

}

.LCO:

main:

.syntax unified
.arch armv7-a
.eabi attribute
.fpu vfpv3-di16
.eabi attribute
.eabi attribute
.eabi attribute
.eabi attribute
.eabi attribute
.eabi attribute
.eabi attribute
.eabi attribute
.thumb

w

27,

20,
21,
23,
24,
25,
26,
30,
18,

2N W=

.file "hello.c"

.section
.align 2

.rodata

.ascii "Hello World!\eee"

.text

.align 2
.global main
.thumb
.thumb_func

.type main, %function

@ args = 0, pretend = 0, frame = 0

@ frame needed =
push {r7, 1r}

1, uses anonymous args = 0

add r7, sp, #0
movw re, #:lowerl6:.LCO
movt ro, #:upperl6:.LCO

bl puts
mov r3, #0
mov ro, r3

pop {r7, pc}

.size main, .-main

.ident "GCC: (Ubuntu/Linaro 4.6.1-9ubuntu3) 4.6.1"

.section

.note.GNU-stack,"",%progbits

10

And then into the following

Contents of section .rodata:

83ec 01000200 48656c6c 6T20576f 726c6421Hello World!
00008310 <main>:
8310: b508 push {r3, 1r}
8312: 248 30f0 movw ro, #33776 ; 0x83f0
8316: f2cO 0000 movt ro, #0
831la: f7ff efed blx 82dc < init+0x20>
831le: 2000 movs ro, #0
8320: bdes pop {r3, pc}
8322: bfoe nop
00008324 < start>:
8324: fo4f OboO mov.w fp, #0
8328: fo4f 0e0O mov.w 1lr, #0O
832c: f85d 1bo4 ldr.w rl, [sp], #4
8330: 466a mov r2, sp
8332: f84d 2do4 str.w r2, [sp, #-4]!
8336: f84d 0do4 str.w re, [sp, #-4]!
833a: f8df co014 ldr.w ip, [pc, #20] ; 8350 < start+0x2c>
833e: f84d cdo4 str.w ip, [sp, #-4]!
8342: 4804 ldr re, [pc, #16] ; (8354 < start+0x30>)
8344: 4b04 ldr r3, [pc, #16] ; (8358 < start+0x34>)
8346: f7ff efdo blx 82e8 < init+0x2c>
834a: f7ff efdc blx 8304 < init+0x48>
834e: 0000 .short ©x0000
8350: 000083el .word 0x000083el
8354: 00008311 .word 0x00008311
8358: 0000839d .word 0x0000839d

Generated using objdump

Introduction to ARM

Acorn Computers Ltd. (Cambridge, England) Nov. 1990

First called Acorn RISC Machine, then Advanced RISC
Machine

Based on RISC architecture work done at UCal Berkley
and Stanford

ARM only sells licenses for its core architecture design
Optimized for low power & performance

VersatileExpress board with Cortex-A9 (ARMv7) core
will be “emulated” using Linaro builds.

This also means some things may not work. You’'ve
been warned.

B

ARM architecture versions

ARMv1
ARMv2
ARMv3
ARMv4
ARMVvV5
ARMv6
ARMv7
ARMv8

ARM1

ARM2, ARM3

ARM6, ARM7

StrongARM, ARM7TDMI, ARMOTDMI
ARM7EJ, ARMOE, ARM10E, Xscale

ARM11, ARM Cortex-M

ARM Cortex-A, ARM Cortex-M, ARM Cortex-R

Not available yet. Will support 64-bit addressing
+ data

“ARM Architecture.” Wikipedia, The Free Encyclopedia. Wikimedia
Foundation, Inc. 3 March 2012. Web. 3 March 2012.

13

ARM Extra Features

e Similar to RISC architecture (not purely RISC)
— Variable cycle instructions (LD/STR multiple)
— Inline barrel shifter

— 16-bit (Thumb) and 32-bit instruction sets combined called
Thumb?2

— Conditional execution (reduces number of branches)

— Auto-increment/decrement addressing modes

— Changed to a Modified Harvard architecture since ARM9
(ARMV5)
— Extensions (not covered in this course):

* TrustZone
* VFP, NEON & SIMD (DSP & Multimedia processing)

Registers

* Total of 37 registers available (including
banked registers):

— 30 general purpose registers
— 1 PC (program-counter)

— 1 CPSR (Current Program Status Register)

— 5 SPSR (Saved Program Status Register)
* The saved CPSR for each of the five exception modes

* Several exception modes
* For now we will refer to “User” mode

ro
rl
r2
r3
!
r5
ré
r7
r8
r9
R10 (SL)
r11 (FP)
r12 (IP)
r13 (SP)
r14 (LR)
rl5 (PC)

Registers

Stack Pointer (SP) — The address of the top element of stack.

Link Register (LR) — Register used to save the PC when entering a
subroutine.

Program Counter (PC) — The address of next instruction. (ARM
mode points to current+8 and Thumb mode points to current+4)

Current Program Status Register (CPSR) — Results of most recent
operation including Flags, Interrupts (Enable/Disable) and Modes

R12 or IP is not instruction pointer, it is the intra procedural call
scratch register

16

Instruction cycle

Fetch — fetch
next instruction

from memory

Execute — Decode —
execute fetched decode fetched
instruction instruction

17

ARM vs. x86

Endianness (Bi-Endian)

— Instructions are little endian (except on the —R profile for ARMv7
where it is implementation defined)

— Data endianness can be mixed (depends on the E bit in CPSR)

Fixed length instructions
— Instruction operand order is generally: OP DEST, SRC (AT&T syntax)

Short instruction execution times
Register differences (CPSR, SPSR...)

— Has a few extra registers
— Operations only on registers not memory (Load/Store architecture)

Pipelining & Interrupts

Exceptions

Processor Modes

Code & Compiler optimizations due to the above differences

ARM Data sizes and instructions

 ARMs mostly use 16-bit (Thumb) and 32-bit
Instruction sets

e 32-bit architecture
— Byte = 8 bits (Nibble is 4 bits) [byte or char in x86]

— Half word = 16 bits (two bytes) [word or short in MS
X86]

— Word = 32 bits (four bytes) [Doubleword or int/long in
MS x86]

— Double Word = 64 bits (eight bytes) [Quadword or

double/long long in MS x86] z
. /
Source: (/ < /,\

http://stackoverflow.com/questions/39419/visual-c-how-large-is-a-
dword-with-32-and-64-bit-code

The Life of Binaries

Starts with c or cpp source code written by us

A compiler takes the source code and generates
assembly instructions

An assembler takes the assembly instructions and
generates objects or .o files with machine code
The linker takes objects and arranges them for
execution and generates an executable. (A dynamic
linker will insert object code during runtime in
memory)

A loader prepares the binary code and loads it into
memory for OS to run

The tools we will use

Compiler — gcc for ARM \/

Assembler — gcc or as (gas) for ARM
Linker — gcc for ARM or gold
Loader — gcc for ARM and Id-linux for ARM

At Power on...

* ROM has code that has been burned in by SoC
vendor (similar to BIOS but not the same)

* Use of memory mapped 10
— different memory components (can be a mix of ROM,
SRAM, SDRAM etc.)
* Contains
— Code for memory controller setup
— Hardware and peripheral init (such as clock and timer)
— A boot loader such as Fastboot, U-boot, X-Loader etc.

U-Boot process

| QEMU start
| U-Boot relocation
| | U-Boot bootm
0x00010000 I
U-Boot| | U-Boot | Linux
& _OX(BZ:LEOOE I B
% Linux Linux | : Linux :
; 0x00410000 o
g [RSES] [REES] [roors|
q’ H
= 0x00800000 | |
e - - - B
. i RootFs|
0x01000000
| U-Boot | | U-Boot -
Y | I

Time

Source: Balducci, Francesco.http://balau82.wordpress.com/2010/04/12/booting-linux-with-u-boot-on-gemu-aten/

U-boot exercise on a Versatile PB

* Run the following in ~/projects/uboot-
exercise:

gemu-system-arm -M versatilepb -m 128M -kernel flash.bin -serial stdio

* flash.bin contains:
— U-boot binary (at 0x10000 in image)
— a root filesystem (at 0x210000 in image)
— the linux kernel (at 0x410000 in image)

e U-boot has bootm <address> to boot code

Source: Balducci, Francesco.http://balau82.wordpress.com/2010/04/12/booting-linux-with-u-boot-on-gemu-at/

U-boot exercise

* U-boot was patched in earlier example b/c it
did not support ramdisk usage with bootm
command. Good ‘nough for simulation.

e U-boot uses bootm <kernel address> <rootfs
image address> to boot

* U-boot relocates itself to specific address
(0x1000000) before loading kernel.

Source: Balducci, Francesco.http://balau82.wordpress.com/2010/04/12/booting-linux-with-u-boot-on-gemu-atm/

PBX w/ Cortex-A9 Memory Map

Figure 4.1. System memory map for standard peripherals

OXFFFFFFFF
CS7 reserved for expansion
Tile Site OX5C000008-0X5FFFFFF
CS6 reserved for expansion
6xCoepREne ©X58000000- OX5BFFFFFF
PCl Interface CS5 reserved for expansion
£x00000008 ©X54000000-0X57FFFFFF Reserved
6x80000000 __C_Si EDB _S[iR_A'! CS4 reserved for expansion System Controller 1
S0 DDR SDRAM 0X50000000-0X53FFFFFF Timers 6 & 7
0Xx70000000 CS3USB Timers4 &5
ox60000000 | _PCl Interface | DXaroponen OxarFFFFFE_ | RTC
CS3 Ethernet SB Control (DVI)
OX4EQDOOOR-OXIEFFFFFF GPIO 2
sMc ¥ T T]
©X40000000 CS3 Config Flash reserved for gﬁ:g (1)
TC DDR2 expansion :
0X20000000 Ox4COPPOPB-OX4DFFFFFF Timers2 &3
i Timers0 & 1
ox1Feoeeee | __IC Peripherals CS2 Cellular RAM V::tc[hdog ;
OX1E040000 Rw : 0x48000000-0x4BOOOOON Watchdog 2
ox1E020000 | C'C 2 &3 (tile site) CS1 NOR flash 5
0x44000000-0x47FFFFFF
GIC 0 & 1 (not used) SSP
Ox1E600000 CS0 NOR flash
UART 3
Reserved 0x40000000-0X43FFFFFF
Ox18003FFF UART 2
Ox18000000 CompactFlash UART 1
Reserved UART 0
OX100E4000 Display
ox100e3000 | APBRegs (Misc) KMI 1
©X100E2000 Reserved KMI 0
[i MCI
0X100E1000 SMC Ceonfiguration e
Ox100EQDDE DMC Configuration =
©x10080000 Reserved 3-wire Interface
0x10060000 Onboard SRAM System Controller 0
S Regist:
0x10040000 Reserved ystem Registers
Ox10920000 DMAC ConfpuratPn
0X10020000 CLCD Ceonfiguration
ox1 FPGA Peripherals Memory at
Ox0000000R-0X03FFFFFF
DI(:);?(])Z::SM / can be remapped to NOR flash
Ox00000000

Source:

httn-//infarenter arm ram/heln/indey icn?tanir=/ram arm dar dniindanh /Rhaiiher html

Cortex M3 Memory Map

FFFFFFFF
Unused |

E0100000
[Debug Components | f==
1 E0040000
SCS + NVIC]
E0000000
Unused
1GB

N A0000000
Debug Bus Matrix UL Unused
| ICODE 1GB

| DCODE Ex
- 60000000
Peripherals 4GB
BgAM P-HUB 40000000
72GB
EX+BB 32K SRAM
20000000
EX =Code execution support Code Space 32K SRAM _/ \
. . /2GB
HX =High performance code execution support HX 256K Flash
00000000
BB =Bit banding support P;

Source: http://www.joral.ca/blog/wp-content/uploads/2009/10/CortexPrimer.pdf

ARM Architecture

IRQ/FIQ
Coresight / <
Interrupt
JTAG

1.

Coresight
~ L2CacheControl Trace

AMBA 3 AX| 64bit
Fig. 1 Cortex-A9 microarchitecture structure and the single core interfaces.

Source: http://www.arm.com/files/pdf/armcortexa-9processors.pdf 28

Instruction cycle

Fetch — fetch
next instruction

from memory

Execute — Decode —
execute fetched decode fetched
instruction instruction

29

Behavior of the PC/R15

PC — Program counter (like the x86 EIP) has the
address of next instruction to execute

When executing an ARM instruction, PC reads as
the address of current instruction + 8

When executing a Thumb instruction, PC reads as
the address of current instruction + 4

When PC is written to, it causes a branch to the
written address

Thumb instructions cannot access/modify PC
directly

When executing
instruction @ x8382

PC=0x00008386

That means...

00008380 <add>:

8380:
8382:
8384:
8386:
8388:
838a:
838¢:683b
838e:
8390:
8392:
8396:
8398:
839a:

b480
b083
af00
6078
6039
687a

|dr
18d3
4618
f107 070c
46bd
bc80
4770

push {r7}

sub sp, #12
add r7, sp, #0
str r0, [r7, #4]
str r1, [r7, #0]
|dr r2, [r7, #4]
r3, [r7, #0]

adds r3,r2,r3
mov ro, r3
add.w r7,r7, #12
mov sp, r/
pop {r7}

bx Ir

ARM Assembly and some conventions

* Now uses Unified Assembly Language (combines ARM &
Thumb instruction sets and code allowed to have intermixed

instructions)

 General form (there are exceptions to this):

<Instruction><Conditional>{S bit} <destination> <source> <Shift/
operand/immediate value>

* Load/Store architecture means instructions only operate on
registers, NOT memory

* Most of the instructions expect destination first followed by
source, but not all...

ARM Assembly and some conventions
contd...

e <dst> will be destination register

e <src> will be source register

e <reg> will be any specified register
* <imm> will be immediate value

e <reg|cxfz..> whatever follows ‘|” means with
the specified flag enabled

Conditional Flags

Indicate information about the result of an operation

N — Negative result received from ALU (Bit 31 of the result
if it is two’s complement signed integer)

Z —Zero flag (1 if result is zero)
C — Carry generated by ALU
V — oVerflow generated by ALU (1 means overflow)

Q —oVerflow or saturation generated by ALU (Sticky flag;
set until CPSR is overwritten manually)

Flags are in a special register called CPSR (Current Program
Status Register)

Flags are not updated unless used with a suffix of S on
instruction

Current/Application Program Status
Register (CPSR/APSR)

* N - Negative flag

* Z - Zero flag
— Carry flag
— Overflow flag

— 1: Disable IRQ mode

— 1: Disable FIQ mode

— 0: ARM state

. 1: Thumb state

* MODE - Mode bits >

C
\Y%
* Q — Sticky overflow
I
F
T

Push and Pop operations

 PUSH <reg list> - decrements the SP and
stores the value in <reg list> at that location

* POP <reg list> - Stores the value at SP into
<reg list> and increments the SP

* Both operations only operate on SP

PUSH operation

INSTRUCTION: push {r7, Ir}

Ox7EFFF950 0x00008010
Ox7EFFF954 OxOAOBOCOD OxOAOBOCOD
Ox7EFFF958 0x0a012454 0x0a012454 0x0a012454
Ox7EFFFS5C 0x00008350 0x00008350 0x00008350
SP Ox7EFFF958 Ox7EFFF954 Ox7EFFF950
R7 OxOAOBOCOD OxOAOBOCOD OxOAOBOCOD

LR 0x00008010 0x00008010 0x00008010 37

Arithmetic operations

ADD: add

— <dst> = <src> + <imm> or <src> + <reg>
ADC: add with carry

— <dst> = <src|c> + <imm> or <src|c> + <reg>
SUB: subtract

— <dst> = <src> - <imm> or <src> - <reg>
SBC: subtract with carry

— <dst>=<src|c> - <imm> or <src|c> - <reg>
RSB: reverse subtract

— <dst> = <imm> - <src> or <reg> - <src>

RSC: reverse subtract with carry
— <dst> = <imm|!c> - <src> or <reg| !c> - <src>

Closer look at Example 1.c

00008354 <main>:

int main(void) {
inta, b, c;
a=10;
b=12;
c=add(a,b);
return O;

int add(int a, int b)
{

return a+b;

}

The highlighted instruction is a
special form of SUB. In this case

means:
SP=5SP-16

Thumb instructions are intermixed
with ARM instructions.

8354 b580 push {r7,1r}
8356: b084 sub sp, #16
8358: afoo add r7, sp, #0
835a: fo4f 030a mov.w r3, #10
835e: 607b str r3, [r7, #4]
8360: f04f 030c mov.w r3, #12
8364: 60bb str r3, [r7, #8]
8366: 6878 Idr r0, [r7, #4]
8368: 68b9 Idr r1, [r7, #8]
836a: fO00 809 bl 8380 <add>
836e: 60f8 str ro, [r7, #12]
8370: fo4f 0300 mov.w r3, #0
8374 4618 mov ro, r3
8376: f107 0710 add.w r7,r7, #16
837a: 46bd mov sp, r7
837c: bd80 pop {r7, pc}
837e: bf00 nop

00008380 <add>:
8380: b480 push {r7}
8382: b083 sub sp, #12
8384: af00 add r7, sp, #0
8386: 6078 str r0, [r7, #4]
8388: 6039 str r1, [r7, #0]
838a: 687a Idr r2, [r7, #4]
838c: 683b Idr r3, [r7, #0]
838e: 18d3 adds r3,r2,r3
8390: 4618 mov ro, r3
8392: f107 070c add.w r7,r7, #12
8396: 46bd mov sp, r7
8398: bc80 pop {r7}
839a: 4770 bx Ir

INSTRUCTION:

MEANS

RO

R1

CPSR

RO

R1

CPSR

SBC & RSB operations

sbcr0, rO, r1
: r0=r0—-rl1-NOT(C)

OxF5F4F3FD

rsb rO, rO, r1

rO=r1-r0 (No flags updated)

OxOAOBOCOD

OxOAO0BOCO3

0x20000010

OxOAOBOCOD

0x20000010

Ox0000000A

OxOAOBOCOD

Ox0000000A

0x20000010

OxOAOBOCOD

0x20000010

After Operation

Before Operation

40

Arithmetic operations part 2

MUL: <dst> = <regl> * <reg2>

MLA: <dst> = (<regl> * <reg2>) + <reg3>

— MLA{SH{<c>} <Rd>, <Rn>, <Rm>, <Ra> where <Rd> is
destination register, <Rn> & <Rm> are the first and
second operands respectively and <Ra> is the addend
register

MLS: <dst> = <reg3> - (<regl> * <reg2>)

Multiply operations only store least significant 32
bits of result into destination

Result is not dependent on whether the source
register values are signed or unsigned values

int main(void) {
inta, b, ¢, d;
a=2;
b=3;
c=4;
d = multiply(a,b);
printf(“a * b is %d\n”, d);
d = multiplyadd(a,b,c);
printf(a * b + c is %d\n”, d);
return O;

}

int multiply(int a, int b)
{

return (a*b);

}

Int multiplyadd(int a, int b, int c)
{

return ((a*b)+c);

}

example2.c

000083b8 <multiply>:
83b8: fb01 f000 mul.w
83bc: 4770 bx
83be: bf00 nop

000083c0 <multiplyadd>:
83c0: fb01 2000 mia
83c4: 4770 bx
83c6: bf00 nop

ro, r1, r0

ro, r11, r0, r2
Ir

INSTRUCTION:

MEANS

RO

R1

R2

CPSR

RO

R1

R2

CPSR

MLA & MLS operations

mlarO, rO, rl, r2

: r0O=r0*rl+r2

Ox0000008F

mls rO, rO, r1, r2

rO=r2—(r0 * r1) (No flags updated)

Ox0000000E

OXFFFFFF77

0x00000003

Ox0000000E

0x20000010

0x00000003

0x20000010

Ox0000000A

Ox0000000E

Ox0000000A

0x00000003

Ox0000000E

0x20000010

0x00000003

0x20000010

After Operation

Before Operation

43

Arithmetic operations part 3

PLEASE NOTE: These instructions are only available on Cortex-R profile

* SDIV - Signed divide
 UDIV —Unsigned divide

* On the Cortex-A profile there is no divide
operation

Example x.s

000083e4 <divide>:

83e4: e710f110 sdiv
83e8: e12fff1e bx Ir
83ec: e1a00000 nop

ro, r0)

000083f0 <unsigneddivide>:
83f0: e730f110 udiv
83f4. e12fff1e bx Ir
83f8: €1a00000 nop

ro, r0)

ro, ro, r1

ro, r0, r1

; (mov

; (mov

Using the emulator

cd ~/projects/linaro
Jstartsim
Password is passwOrd

To copy <localfile> to </path/to/file> on emulator:
scp —P 2200 <localfile> root@localhost:</path/to/file>

To copy </path/to/file> from emulator to <localfile>:
scp —P 2200 root@localhost:</path/to/file> <localfile>

objdump introduction

dumps the objects in an ELF (Executable
Linkable Format) file.

objects that are in a form before they are
linked

-g gdb option for gcc adds debug symbols that
objdump can read

-d option for objdump used for dissassembling
(get assembly code from the ELF format)

helloworld.c

int main(void) {
printf(“Hello world\n”);
return O;

}

objdump usage

objdump —d helloworld | less

Contents of section
83ec 01000200 48656c6c 6f20576T 726c6421Hello World!
83fc 0000OOOO

00008310

8310:
8312:
8316:
831la:
831le:
8320:
8322:

00008324

8324:
8328:
832c:
8330:
8332:
8336:
833a:
833e:
8342:
8344:
8346:
834a:
834e:
8350:
8354:
8358:

<main>:
b508
248
f2co
f7ff
2000
bdes
bfoeoe

< start>:
fo4f
fo4f
f85d
466a
f84d
f84d
fadf
f84d
4804
4b04
f7ff
f7ff
0000

.rodata:

30f0
0000
efed

0beo
0e00
1bo4

2do4
0de4
c0l4
cdo4

efdo
efdc

000083el
00008311
0000839d

push
movw
movt
blx
movs
pop
nop

mov .w
mov.
ldr.
mov
str.
str.
ldr.
str.
ldr
ldr
blx
blx
.short
.word
.word
.word

£ =

S

{r3, 1r}

ro, #33776 ; 0x83f0
ro, #0

82dc < init+0x20>

ro, #0

{r3, pc}

fp, #0

lr, #0

rl, [sp], #4

r2, sp

r2, [sp, #-4]!

ro, [sp, #-4]!

ip, [pc, #20] ; 8350 < start+0x2c>
ip, [sp, #-4]!

ro, [pc, #16] ; (8354 < start+0x30>)
r3, [pc, #16] ; (8358 < start+0x34>)
82e8 < init+0x2c>

8304 < init+0x48>

0x0000

0x000083el

0x00008311

0x0000839d

48

Try dividing now on the emulator

Goto ~/projects/examples
Copy examplel to divexample

Replace the add () function in examplel.c with
divide and return (a/b)

Run make clobber && make
Disassemble...

— objdump —d examplel | less

What do you see?

NOP Instruction

A most interesting instruction considering it does
nothing

ARM Reference Manual mentions that this instruction
does not relate to code execution time (It can increase,

decrease or leave the execution time unchanged).
Why?

Primary purpose is for instruction alignment. (ARM and
Thumb instructions together... What could go wrong?)
Can also be used as part of vector tables

In some microcontrollers, it is also used for
synchronization of pipeline.

NG
Barrel Shifter @ﬁﬂ

Hardware optimization inline with the ALU allows for a multiplier
(power of 2) within same instruction cycle

Allows for shifting a register value by either an unsigned integer
(MAXVAL of 32) or a value specified in bottom byte of another register.

ASR — Arithmetic Shift Right (MSB copied at left, |last bit off right is
Carry)

LSL — Logical Shift Left (Os at right, last bit off left is Carry)
— MOV R7, R5, LSL #2 means (R7=R5*4) or (R5<<2)

— ADD RO, R1, R1, LSL #1 means RO=R1+(R1<<1)

LSR — Logical Shift Right (Os at left, last bit off right is Carry)

ROR — Rotate Right (bits popped off the right end, is directly pushed
into left, last bit off right is Carry)

RRX — Rotate Right with Extend (bits popped off the right end first go
into Carry, Carry is shifted in to left, last bit off right is Carry)

Hints on how to RTFM

{S} — updates flags in the CPSR
{<c>} —allows mnemonic of conditional to be added

{<g>} —instruction suffix with either:

— .N Narrow, assembler must use 16-bit encoding for
the intruction

- W Wide, assembler must use 32-bit encoding for the
instruction

Do not use the .N or .W in your assembly code.

As per manual, it will throw errors. GNU Assembler
decides on encoding depending on options selected.

Example 3.1.c

int main(void) 00008318 <main>:

{ 8318: b508 push
inta, b, d; 831a: 2001 movs
a=6; 831c: 22c0 movs
b=38§; 831e: 248 4100 movw
d = multiplybytwo(a) * multiplybytwo(b); 8322: f2c0 0100 movt
printf("2a * 2b is %d\n", d); 8326: frffefec blx

832a: 2000 movs
return O; 832c: bd08 pop

} 832e: bf0O nop

000083a8 <multiplybytwo>:
int multiplybytwo(int a) 83a8: 0040 Isls

{ 83aa: 4770 bx
return a*2;

}

{r3, Ir}

ro, #1

r2, #192 ; OxcO
r1, #33792 ; 0x8400
r1, #0

8300 <_init+0x3c>
ro, #0

{r3, pc}

ro, r0, #1
Ir

Example 3.2.c

int main(void)
{
inta, b, d;
a = -6;
b=28;
d = dividebytwo(a) / dividebytwo(b);
printf("a/2 / b/2 is %d\n", d);

return O;

}

int dividebytwo(int a)
{

return a/2;

}

00008318 <main>:

8318:
831a:
831c:
831e:
8322:
8326:
832a:
832c:
832e:

b508 push
2001 Mmovs
2200 Movs

f248 4104 movw
f2c0 0100 movt

f7ff efec blx
2000 movs
bd08 pop
bf00 nop

000083a8 <dividebytwo>:

83a8:
83ac:
83ae:

eb00 70d0 add.w
1040 asrs
4770 bx

{r3, Ir}

ro, #1

r2, #0

r1, #33796 ; 0x8404
r1, #0

8300 <_init+0x3c>
ro, #0

{r3, pc}

ro, r0, r0, Isr #31
ro, r0, #1
Ir

Example 3.2.c

add.w rO0, rO0, r0, Isr #31
RO OxFFFFFFF9
R1 0x0000000E
R2 0x00000003
CPSR O0xA0000010
RO OxFFFFFFF8
R1 0x0000000E
R2 0x00000003
CPSR 0x20000010

RO

R1

R2

CPSR

RO

R1

R2

CPSR

asrs ro, r0, #1

OXFFFFFFFC

Ox0000000E

0x00000003

0xA0000010

0x00001000

Ox0000000E

0x00000003

0x20000010

INSTRUCTION:

MEANS

RO

R1

R2

CPSR

RO

R1

R2

CPSR

RRX & LSL operation

mvn r0O, rO, RRX

 r0="~r0>>1

add rO, rO, r1, LSL #4
rO=rO+ (r1 * 16) (No flags updated)

OXFFFFFFFA

OxO00000EA

Ox0000000E

Ox0000000E

0x00000003

0x00000003

0xA0000010

0x20000010

Ox0000000A

Ox0000000A

Ox0000000E

Ox0000000E

0x00000003

0x00000003

0x20000010

0x20000010

56

More Data operations

e MOV — move value from one register to another

Combine with postfixes to modify:

— MOVT: Moves only top half word into destination
without changing lower half word

— MOVS PC,<reg>: Moves value into destination register
and updates CPSR flags

 MVN — Bitwise NOT of value into destination
register

* Cannot be used on memory locations

Example 4.c

int main(void) 00008318 <main>:

{ 8318: b508 push {r3, Ir}
inta, b, d; 831a: 2001 movs ro, #1
a = 221412523; 831c: 1248 4108 movw r1, #33800 ; 0x8408
b=3; 8320: 247 6201 movw r2, #30209 ; 0x7601
d = multiply(a,b); 8324: f2c0 0100 movt r1, #0
printf("a * b is %d\n", d); 8328: f2¢c2 7297 movt r2, #0135 ; 0x2797

832c: frffefe8 blx 8300 <_init+0x3c>

return O; 8330: 2000 movs r0, #0

} 8332: bd08 pop {r3, pc}

int multiply(int a, int b) 000083ac <multiply>:

{ 83ac: fb01f000 mul.w ro, r1, r0
return (a*b); 83b0: 4770 bx Ir

} 83b2: bf00O nop

221412523*3 = 664237569 or
0x27977601

Example 6.c

int main(void)
{

int a, b;

a = 6;

I/l Important: Subtraction taking place
b = a - 182947,

printf("a's negatory is %d\n", b);

return O;

Before the subtraction operation
CPSR = 0x60000010
After the subtraction operation

CPSR = 0x80000010

0000838c <main>:

838c: b590
838e: b085
8390: af00
8392: f04f 0306
8396: 60fb
8398: f3ef 8400
839c: 60bc
83%e: 68fa
83a0: 243 535d
83a4: f6cf 73fd
83a8: 18d3
83aa: 607b
83ac: f3ef 8400
83b0: 603c
83b2: 248 4344
83b6: f2c0 0300
83ba: 4618
83bc: 6879

push
sub
add
mov.w
str
mrs
str

|dr
movw
movt
adds
str
mrs
str
movw
movt
mov
|dr

{rd, r7, Ir}

sp, #20

r7, sp, #0

r3, #6

r3, [r7, #12]

r4, CPSR

r4, [r7, #8]

r2, [r7, #12]

r3, #13661 ; 0x355d
r3, #65533 ; Oxfffd
r3, r2,r3

r3, [r7, #4]

r4, CPSR

r4, [r7, #0]

r3, #33860 ; 0x8444
r3, #0

ro, r3

r1, [r7, #4]

Reversing byte order

e REV —reverses byte order (& endianness) of
value in register and stores into destination

register

* REV16 —reverses byte order of each 16-bit
halfword in register and stores into
destination register

 REVSH —reverses byte order of lower 16-bit
halfword in register, sign extends to 32 bits
and store into destination register

INSTRUCTION:

RO

CPSR

RO

CPSR

REV & REV16 operations

rev rO, rO

OxFFDECDAB

rev16 rO, rO

0x20000010

OxCDABFFDE

0x20000010

OxABCDDEFF

0x20000010

OxABCDDEFF

0x20000010

61

Current Program Status Register

* N - Negative flag

— Zero flag
— Carry flag
— Overflow flag

— 1: Disable IRQ mode

— 1: Disable FIQ mode

— 0: ARM state

. 1: Thumb state

— Mode bits o

Z
C
\Y%
* Q — Sticky overflow
I
F
T

I
S
o
I+

Logical & Comparison operations

AND — Bitwise AND

BIC — Bitwise bit clear

EOR — Bitwise Exclusive OR

ORR — Bitwise OR

ORN — Bitwise OR NOT

CMP — Compare. SUB but with NO destination. (Same as SUBS)

CMN — Compare Negative. ADD but with NO destination. (Same
as ADDS)

TEQ — Test Equivalence. Like EOR but with NO destination.
TST — Test. Like AND but with NO destination.

Example 7.1.c

int main(void)

{
inta, b, d;
a=221412523;
b =374719560;

d = and(a,b);

printf("a & b is %d\n", d);

return O;
}
int and(int a, int b)
{ 000083d0 <and>:
return (a&b); 83d0: 4008 ands ro, r1

} 83d2: 4770 bx

Example 7.2.c

int main(void)

{
inta, b, d;
a=221412523;
b =374719560;

d = orr(a,b);
printf("a | b is %d\n", d);

return O;

}

int orr(int a, int b) 000083d0 <orr>:
{ 83d0: 4308 orrs ro, r1
return (a|b); 83d2: 4770 bx Ir

}

Example 7.3.c

0000838c <main>:
int main(void) <prolog> ...
{ 8392: f04f0308 movw r3,#8
inta, b, d; 8396: 60bb str (3, [r7, #8]
a=8; 8398: f04f0309 mov.w 3, #9
b=9; 839c: 607b str (3, [r7, #4]
. 83%e: f3ef 8400 mrs r4, CPSR
if((a * b) > 0) 83a2: 603c str rd, [r7, #0]
d = add(a,b); 83a4: 68ba Idr r2, [r7, #8]
else 83a6: 687D Idr (3, [r7, #4]
d = subtract(b,a); 83a8: 4053 eors r3, r2
_ _ 83aa: 2b00 cmp r3, #0
printf("a & b is %d\n", d); 83ac: ddo5 ble.n 83ba <main+0x2e>
83ae: 68b8 ldr ro, [r7, #8]
return 0; 83b0: 6879 Idr r1, [r7, #4]
} 83b2: 000 f829 bl 8408 <add>
. _ . 83b6: 60f8 str ro, [r7, #12]
int add(int a, int b) 83b8: 004 b.n 83c4 <main+0x38>
{ 83ba: 6878 Idr 0, [r7, #4]
return (a+b); 83bc: 68b9 Idr r1, [r7, #8]
} 83be: f000 831 bl 8424 <subtract>
. . . 83c2: 60f8 str ro, [r7, #12]
int subtract(int a, int b) <contd>...

{

return (a-b);

}

BIC

BIC clears the bits specified in a mask
~or example,

R0 =0x57 or 0b0101 0111

R1 =0x24 or 0b0010 0100

BIC <R2><R0> <R1>
— Means R2 = RO & ~(R1) = 0b0101 0011 or 0x53

Mask can also be a shifted value (using Shift
operations)

Memory operations Part |

* LDR - Load data from memory into registers
 STR — Store data from registers to memory

 Caveat: LDR/STR can load/store data on a
boundary alignment that is the same as the
data type size being loaded/stored.

— LDR can only load 32-bit words on a memory
address that is multiples of 4 bytes.

Memory Operations Part | contd...

LDR r0Q, [r1] loads rO with contents of memory address
pointed to by rl

STR rO, [r1] stores the contents of rO to the memory
address pointed to by rl.

— Warning: This can be confusing since destination is actually
specified in the second argument

Also LDR rO, [r1, #4] means

— rO=[rl+ 4] and rl value remains unchanged
Similarly STR r0Q, [r1, #4] means

— [r1+44] =r0 and r1 value remains unchanged

The above two instructions addressing mode is called
pre-indexed addressing

Exan010 le 8.c

0838c <main>:

int main(void) 838c: b580 push {r7, Ir}

{ 838e: b084 sub sp, #16
int a, b; 8390: af00 add r7, sp, #0
int *x: 8392: fO4f 0308 mMov.w r3, #8

o 8396: 607b str r3, [r7, #4]
a=8; 8398: fo4f 0309 mov.w r3, #9
b=9; 839c: 60fb str r3, [r7, #12]

839e: f107 0304 add.w r3, r7, #4
X = &a; 83a2: 60bb str r3, [r7, #8]
b =*X + 2: 83a4: 68bb Idr r3, [r7, #8]
printf("The address of a is 0x%x\n",x); 2236: 681b Idr r3, Ir3, #0]

oo _ o wen a8: f103 0302 add.w r3, r3, #2
printf("The value of b is now %d\n",b); 83ac: 60fb str (3, [r7, #12]
return O; 83ae: f248 4330 movw r3, #33840 ; 0x8430

} 83b2: f2c0 0300 movt r3, #0
83b6: 4618 mov ro, r3
83b8: 68b9 Idr r1, [r7, #8]
83ba: f7ff ef92 bix 82e0 <_init+0x20>
83be: f248 434c movw r3, #33868 ; 0x844c
83c2: f2c0 0300 movt r3, #0
83c6: 4618 mov ro, r3
83c8: 689 Idr r1, [r7, #12]
83ca: f7ff ef8a bix 82e0 <_init+0x20>
83ce: fO4f 0300 mov.w r3, #0
83d2: 4618 mov ro, r3
83d4: f107 0710 add.w r7, r7, #16
83d8: 46bd mov sp, r7

83da: bd80 pop {r7, pc}

Memory operations Part | contd...

* R7 in the previous example is known as base
address register, where the base address
register can by any one of RO-R12, SP, or LR

* We will cover consecutive multiple loads in
one instruction later

Control Flow operations (Table A4-1)

Description Thumb mode | ARM mode
range range

B <label> Branch to target address +/- 16 MB +/-32 MB
BL, BLX <imm> Call a subroutine +/-16 MB +/-32 MB
Call a subroutine, change instruction set
BLX <reg> Call a subroutine, optionally change Any Any
instruction set
BX Branch to target address, change Any Any
instruction set
CBz Compare and Branch on Zero 0-126 bytes Does not exist
CBNZ Compare and Branch on Nonzero 0-126 bytes Does not exist
TBB Table Branch (byte offsets) 0-510 bytes Does not exist
TBH Table Branch (halfword offsets) 0-131070 Does not exist

bytes

72

Conditional Branching

BLE: Branch if less than or equal
— Z=1 OR N!=V
BGT: Branch if greater than
— /=0 AND N=V
BEQ: Branch if equal
— /=1
BNE: Branch if not equal
— /=0
How do N and V flags tell us if something is less or greater
than?
— Generally there is a CMP or TST instruction before
— CMP <r0> <r1> means perform <r0> - <r1>

0000835c <__libc_csu_init>:

835c:
8360:
8362:
8366:
8368:
836a:
836c¢:
836e:
8372:
8374:
8378:
837c:
837e:
8380:
8384:
8386:
8388:
838a:
838c:
838e:
8390:
8392:
8396:
8398:
839c:

e92d 43f8
4606
f8df 9034
460f
4d0c
4690
449

frff ffo1
447d
ebc5 0909
ea5f 09a9
d009
2400
f855 3b04
4630
4639
4642
3401
4798
454c
d1f6
e8bd 83f8
bf00
00008bal
00008b96

stmdb
mov
ldr.w
mov
ldr
mov
add

b

add
rsb
movs.w
beq.n
movs
ldr.w
mov
mov
mov
adds
blx
cmp
bne.n
ldmia.w
nop
.word
.word

Example 9.s

sp!, {r3, r4, r5, r6, r7, r8, r9, Ir}
re, r0

ro, [pc, #52] ; 8398 <__libc_csu_init+0x3c>
r7, r1

r5, [pc, #48] ; (839c <__libc_csu_init+0x40>)
r8, r2

r9, pc

8294 < init>

r5, pc

ro, r5, r9

ro, r9, asr #2

8392 <__libc_csu_init+0x36>
r4, #0

r3, [r5], #4

ro, r6

r1, r7

r2, r8

r4, #1

r3

r4, r9

8380 <__libc_csu_init+0x24>
sp!, {r3, r4, r5, r6, r7, r8, r9, pc}

0x00008ba0
0x00008b96

Current Program Status Register

* N - Negative flag

— Zero flag
— Carry flag
— Overflow flag

— 1: Disable IRQ mode

— 1: Disable FIQ mode

— 0: ARM state

. 1: Thumb state

— Mode bits 72

Z
C
\Y%
* Q — Sticky overflow
I
F
T

I
S
o
I+

Hello, World! in ARM Assembly

text

start: global _start Linux GNUEABI spec means syscall

identifier is put in R7 and arguments
@ sys_write (fd, pstr, len) in RO-R6
@r7=4r0r1r2
mov r0, #1 @ fd <- stdout . . .
adr r1, msg @ pstr <- *msg Linux kernel ignores #imm value after
mov r2, #14 @ len <- 14 SWI instruction
mov r7, #4 @ syscall <- sys_write

gvis?/s@eiﬁs(teer;tzzge) Syscall invoked with SWI/SVC

@ r7=1r10 instruction (supervisor mode)
mov r0, #0 @ exitcode <- 0
mov r7, #1 @ syscall <- sys_exit
swi 0 @ system call
msg:
.asciz "Hello, world!\n"
.end

Source: http://peterdn.com/post/e28098Hello-World!e28099-in-ARM-assembly.aspx

Instructions covered so far...

NOP

ADD, ADC, SUB, SBC, RSB, RSC
ASR, LSL, LSR, ROR, RRX

MOV, MVN

REV, REVSH, REV16

AND, EOR, ORR, ORN, CMP, CMN
BIC, TEQ, TST

B, BL, BLX, BLE, BGT

SWI

Hints on how to RTFM

{S} — updates flags in the CPSR
{<c>} —allows mnemonic of conditional to be added

{<g>} —instruction suffix with either:

— .N Narrow, assembler must use 16-bit encoding for
the intruction

- W Wide, assembler must use 32-bit encoding for the
instruction

Do not use the .N or .W in your assembly code.

As per manual, it will throw errors. Assembler decides
on encoding depending on options selected.

Lab 1

* Again commands given below for copying files

into and out of the simulator

scp —P 2200 <localfile> root@localhost:/path/to/file
scp —P 2200 root@localhost:/path/to/file <localfile>
Password is passwOrd

* Fibonacci program

— Write assembly function to calculate fibonacci value
at a given position x

— RO has x
— For example: [0, 1, 2, 3,4,5,6 ...] X

[0,1,1, 2, 3,5, 8...] fibonacci(x)
— Only modify fib.s

Sample algorithms

/l Non-recursive /l Recursive
int fibonacci(int x) { int fibonacci(int x) {
int previous = -1; if(x<=0) return 0;
int result = 1; if(x==1) return 1;
int i=0; return fioN(x-1) + fibN(x-2);
int sum=0; }

for (i=0;i<=x;i++){
sum = result + previous;
previous = result; NOTE: Filler code follows Recursive

result = sum; algorithm.

}

return result;

}

Possible solution

fibonacci:
push {r3, r4, r5, Ir} ; function prolog
subs r4, r0, #0 ;r4=r0-0
ble .L3 ; if (rO <= 0) goto .L3
cmp r4, #1 ; Compare r4 to 1
beq .L4 ; if (r4 == 1) goto .L4
add r0, r4, #4294967295 ; r0 =r4 + 4294967295 (or #OXxFFFFFFFF)
bl fibonacci ; goto fibonacci @PC relative address
mov r5, r0 ; r5 =10
sub r0, r4, #2 ;r0=r4 -2
bl fibonacci ; goto fibonacci @PC relative address

adds r0, r5, rO

pop {r3, r4, r5, pc}
.L3:

mov r0, #0

pop {r3, r4, r5, pc}
L4:

mov r0, #1

pop {r3, r4, r5, pc}

DAY 1 PART 2

Ah the old joke...

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

Ox3A28213A
0Ox6339292C,

Ox 7363%632E.

[HATE YOU.

Y

Source: http://xkcd.com/138/

83

Memory operations Part | reminder...

e LDR O, [r1]

* R1in this example is known as base address
register, where the base address register can
be any one of RO-R12, SP, or LR

Memory Operations Part Il: Indexing

operations

* Preindex with Writeback (denoted by [Rn,offset]!)
— Calculates address in base register + offset
— Uses calculated address for operation into Rn
— Stores the calculated address into base register

* Preindex (denoted by [Rn,offset])
— Calculates address in base register + offset
— Uses calculated address for operation into Rn
— Does NOT store the calculated address into base register

* Postindex (denoted by [Rt])
— Uses address in base register for operation into Rn
— Calculates address in base register + offset
— Stores the calculated address into base register

LDR Indexing

Indexing mode Instruction R1 or Rbase
Preindex with LDR rO, [r1, #2]! r0=[rl + 2] ri=rl+2
Writeback
LDR rOQ, [r1, r2]! rO=[rl+r2] rl=rl+r2
LDRrO, [r1, r2, LSL#3]! rO=[r1+(r2LSL3)] rl=rl1+(r2LSL3)
Preindex LDR rO, [r1, #2] rO = [rl + 2] rl=rl
LDR rO, [r1, r2] rO=[rl +r2] ri=rl
LDRrO, [r1,r2, LSL#3] rO=[r1+(r2LSL3)] rl1=rl
Postindex LDR rO, [r1], #2 ro =[ri] rl=rl+2
LDR rO, [r1], r2 ro =[ri] rl=rl+r2
LDRrO, [r1], r2, LSL#3 rO=[r1] rl=rl1+(r2 LSL 3)

Instruction form: LDR<c> <Rt>, [<Rn>{, offset}] where [] denotes memory contents of
86

Source: http://www.slideshare.net/guest56d1b781/arm-fundamentals

STR indexing

Preindex with STR rO, [r1, #2]! [r1+2]=r0 rl=rl1+2
Weriteback
STRrO, [r1, r2]! [rl+r2]=r0 rl=rl+r2
STRrO, [r1, r2, LSL#3]! [r1+(r2LSL3)]=r0 rl1=r1+(r2LSL3)
Preindex STRrO, [r1, #2] [r1+2]=r0 rl=rl
STR rO, [r1, r2] [rl+r2]=r0 rl=rl
STRrO, [r1,r2, LSL#3] [r1+(r2LSL3)]=r0 rl=rl
Postindex STRrO, [r1], #2 [r1] =r0 rl=rl+2
STRrO, [r1], r2 [r1] =r0 rl=rl+r2
STRrO, [r1], r2, LSL#3 [r1]=r0 rl=rl+(r2 LSL 3)

Instruction form: STR<c> <Rt>, [<Rn>{, offset}] where [] denotes memory contents of
Source: http://www.slideshare.net/guest56d1b781/arm-fundamentals

Example 10 (Any program)

00008318 <main>:

8318:
831a:
831c:
8320:
8324:
8328:
832c:
8330:
8332:

b508
2001

f248 4108
f247 6201
f2c0 0100
f2c2 7297
f7ff efe8
2000
bd08

push
movs
movw
movw
movt
movt
blx
movs

pop

00008334 <_start>:

{r3, Ir} 8334: f04f Ob0O0
ro, #1 8338: f04f 0e00
r1, #33800 ; 0x8408 833c: f85d 1b04
r2, #30209 ; 0x7601 8340: 466a
r1, #0 8342: f84d 2d04
r2, #10135 ; 0x2797 8346: f84d 0d04
8300 <_init+0x3c> 834a: f8df c014
r0, #0 8360 <_start+0x2c>
{r3, pc} 834e: f84d cd04
8352: 4804
(8364 <_start+0x30>)
8354: 4b04
(8368 <_start+0x34>)
8356: f7ff efc6
835a:. frff efd8
835e: 0000
8360: 000083f9
8364: 00008319
8368: 000083b5

mov.w
mov.w
ldr.w
mov
str.w
str.w
ldr.w

str.w
Idr

Idr

blx
blx
.short
.word
.word
.word

fp, #0

Ir, #0

r1, [sp], #4
r2, sp

r2, [sp, #-4]!
ro, [sp, #-4]!
ip, [pc, #20]

ip, [Sp, #'4]'
r0, [pc, #16]

r3, [pc, #16]

82e4 <_init+0x20>
830c < _init+0x48>
0x0000
0x000083f9
0x00008319
0x000083b5

A note on LDR/STR

* For loading large constants into registers, the
assembler generally prefers using MOVN
<Rd>, <##~large constant> (~ is Bitwise NOT)

e Assembler likes to use values between 0 and
255 along with barrel shifts to arrive at value

 Example:

— Instead of:
LDR RO, #ffffff23
MOVN RO, #0xDC

Other Instructions

SSAT <regl> <imm> <reg2> — Signed Saturate
USAT <regl> <imm> <reg2>— Unsigned Saturate

QADD <regl> <reg2> <reg3>— Add & saturate
the result (<regl> = sat(<reg2> + <reg3>)

QSUB —Subtract & saturate the result
<regl> = sat(<reg2> - <reg3>)

QDADD - Saturate Double & Add <regl>=sat
(<reg2> + 2*<reg3>)

QDSUB — <regl> = sat(<reg2> - 2*<reg3>)

Control Flow operations (Table A4-1)

Description Thumb mode | ARM mode
range range

B <label> Branch to target address +/- 16 MB +/-32 MB

BL, BLX <imm> Call a subroutine +/-16 MB +/-32 MB
Call a subroutine, change instruction set

BLX <reg> Call a subroutine, optionally change Any Any
instruction set

BX Branch to target address, change Any Any
instruction set

CBz Compare and Branch on Zero (16-bit) +4 to +130 Does not exist
Permitted offsets are even from 0 — 126 bytes

CBNZ Compare and Branch on Nonzero (16-bit) +4 to +130 Does not exist
Permitted offsets are even from 0 — 126 bytes

TBB Table Branch (byte offsets) (32-bit) 0-510 bytes Does not exist

TBH Table Branch (halfword offsets) (32-bit) 0-131070 Does not exist

bytes

91

Conditional execution

* Most instructions can be made conditional by
adding two letter mnemonic from table A8-1
to end of an existing instruction

* |tincreases performance by reducing the # of
branches

 Example:
— ADDEQ.r0, r1, r2 ; If zero flag is set then rO=r1+r2

Conditional operations (Table A8-1)

EQ Equal Z=1

NE Not Equal Z=0

CS/HC Unsigned higher or same C=1

CC/LO Unsigned lower C=0

Ml Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow V=0

HI Unsigned Higher C=1 AND Z=0
LS Unsigned lower or same C=0OR Z=1
GE Greater or equal N=V

LT Less than NI=V

GT Greater than Z=0 AND N=V
LE Less than or equal Z=1 OR N!I=V

AL Always

Current Program Status Register

* N - Negative flag

— Zero flag
— Carry flag
— Overflow flag

— 1: Disable IRQ mode

— 1: Disable FIQ mode

— 0: ARM state

. 1: Thumb state

— Mode bits 7

Z
C
\Y%
* Q — Sticky overflow
I
F
T

I
S
o
I+

Pipelining

Does not decrease instruction execution time
Increases throughput

Time allocated dependent on longest cycle
Instruction

Fetches and decodes instructions in parallel
while executing current instruction.

Source:

http://www-cs-faculty.stanford.edu/~eroberts/courses/soco/projects/2000-01/risc/pipelining/
index.html

Also see httn://www._cse.unsw.ediu.au/~cs9244/06/seminars/08-leonidr.ndf

Pipelining in action

Cycle 1. 2:3: 4 5 67 8: 9
Operation
ADD
SUB
ORR
AND
ORR
EOR

F - Fetch D -Decode E - Execute

Source: http://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARM _Architecture _Overview.pdf

96

Issues associated with pipelining

e Branch instructions

— Conditional execution reduces number of
branches, which reduces # of pipeline flushes

* |nstructions dependent on previous
instructions (data-dependency)

* Interrupts in the beginning/middle/end of
cycle?

* How code is optimized for pipelining is
compiler & processor dependent

Source: http://bnrg.eecs.berkeley.edu/~randy/Courses/CS252.596/Lecture08.pdf

Other ways of branching

LDR PC, [PC, #offset]
* Value written has to be aligned for mode

e Earlier processors (armv4 and earlier) used to
have prefetch
— PC points two instructions ahead
— Programmer has to account for PC+8
— Store address of branch location at current address +
offset + 8

e Same tradition continues for all arm architectures
so far

Source: http://en.wikipedia.org/wiki/List of ARM microprocessor cores

Example 12.s

0x10000000 add r0, r1, r2
0x10000004 |dr pc, [pc, #4]
0x10000008 subr1,r2,r3
0x1000000c cmp r0, r1
0x10000010 0x20000000

Branch target
0x20000000

strr5, [r13, -#4]!

99

ONE instruction to rule them all..

 LDM/STM — Load multiple/Store multiple

e Used in conjunction with a suffix (called
mode) for how to move consecutively

* Lowest register uses the lowest memory
address

LDM/STM modes

Short description | LDM STM Start End

synonym | synonym | Address | Address

A Increment After P=0,U=1 P=0,U=1 | Rn Rn Rn+4*N
+4*N-4
1B Increment Before P=1,U=1 P=1,U=1 Rn+4 Rn+4*N Rn+4*N
DA Decrement after P=0,U=0 P=0,U=0 Rn-4*N Rn Rn-4*N
+4

DB Decrement before P=1,U=0 P=1,U=0 | Rn-4*N Rn-4 Rn-4*N
FA Full Ascending DA IB

EA Empty Ascending DB 1A

FD Full Descending 1A DB

ED Empty Descending B DA

N is the number of registers

n goes from 1..N
101

Stack operations

* |[nstead of POP, we use Load-Multiple
* |[nstead of PUSH, we use Store-Multiple
e Stacks can be

— (A)scending — stack grows to higher memory
addresses

— (D)escending — stack grows to lower memory
addresses

LDM/STM pairs

STMIA LDMDB
STMIB LDMDA
STMDA LDMIB

STMDB LDMIA

103

R3

R4

R5

R7

SP

STMDB operation

INSTRUCTION: STMDB sp!, {r3, r4, r5, r7}

0x8000

0x8004
OxABCDDEFF

0x8008
OxO000CAFE

0x800C
OxFEEDOOOO

0x8010
OxFOODO00O

0x8014
0x00008018

0x8018

SP

OxABCDDEFF

OxO000CAFE

OxFEEDOOOO

OxFOODO000

0x00008008

104

R3

R4

R5

R7

SP

LDMIA operation

INSTRUCTION: LDMIA sp!, {r3,r4,r5, r7}

0x8000

0x8004
OxABCDDEFF

0x8008
OxO000CAFE

0x800C
OxFEEDOOOO

0x8010
OxFOODO000

0x8014

0x8018
0x00008018 SP

OxABCDDEFF

OxO000CAFE

OxFEEDOOOO

OxFOODO00O

0x00008008

105

0000835c <__libc_csu_init>:
e92d 43f8 stmdb

835c:
8360:
8362:
8366:
8368:
836a:
836c¢:
836e:
8372:
8374:
8378:
837c:
837e:
8380:
8384:
8386:
8388:
838a:
838c:
838e:
8390:
8392:
8396:
8398:
839c:

4606
f8df 9034
460f
4d0c
4690
4419

f7ff ff91
447d

ebc5 0909
eabf 09a9

d009
2400

f855 3b04

4630
4639
4642
3401
4798
454c¢
d1f6

e8bd 83f8

bf00

mov
ldr.w
mov
ldr
mov
add

b

add
rsb
movs.w
beq.n
movs
ldr.w
mov
mov
mov
adds
blx
cmp
bne.n
Idmia.w
nop

00008ba0 .word
00008b96 .word

Example 13.s

sp!, {r3,r4,r5, r6, r7,r8, r9, Ir}
re, ro0

ro, [pc, #52]
r7, r1

r5, [pc, #48]
r8, r2

r9, pc

8294 <_init>
r5, pc

ro, r5, r9

ro, r9, asr #2
8392 <__libc_csu_init+0x36>
r4, #0

r3, [r5], #4

r0, r6

r1, r7

r2, r8

r4, #1

r3

r4, r9

8380 <__libc_csu_init+0x24>
sp!, {r3, r4, r5, r6, r7, r8, r9, pc}

; 8398 <__libc_csu_init+0x3c>

; (839c <__libc_csu_init+0x40>)

0x00008ba0
0x00008b96

Switching between ARM and Thumb
states

* A processor in Thumb can enter ARM state by
executing any of the following:

— BX, BLX, or LDR/LDM operation on PC (R15)

e A processor in ARM can enter Thumb state by
executing any of the following:
— ADC, ADD, AND, ASR, BIC, EOR, LSL, LSR, MOV,
MVN, ORR, ROR, RRX, RSB, RSC, SBC, or SUB

operation on PC (R15) and which does not set the
condition flags.

Thumb?2 instruction set means ...

The instructions in Thumb?2 itself are a mix of 16-bit and 32-
bit instructions and are run in Thumb-mode

Compiler option to mix ARM-mode and Thumb-mode
instructions: -m-thumb-interwork

Default is —=mno-thumb-interwork
The Xeno Question - So how can we tell the difference?

Mentioned in the ATPCS manual (included in the
references)

The LSB (rightmost bit) of branch address has to be 1 if the
instructions at that address are to be interpreted as
Thumb?2!

If you want to jump to address containing a mix of 16-bit
and 32-bit instructions make sure the address is odd.

How does Thumb mode differentiate
b/w 16-bit and 32-bit instructions?

n Thumb mode ARM processor only reads
nalfword-aligned halfwords

Looks at instruction encoding:

— If bits 15:11 of the halfword being decoded is one
of following, then it is the first halfword of a 32 bit
Instruction

* 0b11101
* 0b11110
* Ob11111

— Otherwise, it is interpreted as 16-bit instruction

ARM-Thumb Procedure Call Standard

Followed by compilers

Caller saved registers:

— The caller subroutine must preserve the contents of
RO — R3 if it needs them before calling another
subroutine

Callee saved registers:

— The called subroutine must preserve the contents of
R4 — R11 (usually on the stack in memory) and must
restore the values before returning (if used).

What about interrupts?

ATPCS

Register | Synonym | Special Role in the procedure call standard

r15 PC The Program Counter. (x86 EIP)

rl4 LR The Link Register. (x86 saved EIP)

ri3 SP The Stack Pointer. (x86 ESP)

r12 P The Intra-Procedure-call scratch register. (x86 RSI)
ril v8 Variable-register 8/Frame Pointer (x86 EBP)
r10 v/ Variable-register 7/Stack Limit

r9 v6/SB/TR | Platform specific register.

r8 v5 Variable-register 5.

r7 v4 Variable-register 4. (can also be x86 EBP)

ré v3 Variable-register 3.

r5 v2 Variable-register 2.

r4 vl Variable-register 1.

r3 a4 Argument/scratch register 4.

r2 a3 Argument/scratch register 3.

rl a2 Argument/result/scratch register 2.

ro al Argument/result/scratch register 1.

ro
rl
r2
r3
!
r5
ré
r7
r8
r9
R10 (SL)
r11 (FP)
r12 (IP)
r13 (SP)
r14 (LR)
rl5 (PC)

-

-

|

ATPCS

Caller saved

Callee saved

FP is neither mandated nor precluded from use. If it is
used, it must be Callee saved. In ARM state, R11 is used. In
Thumb state, R4-R7 can be used.

Stack Pointer should be same upon Callee return as it was
upon Callee entry. So should the Link Register!

112

ATPCS in action

int main(void) int main(void)

{ {
one();
retu(r)n 0: r0-r3 saved.
) ’ call to one() made.
}
void one(void) void one(void)
{
. {
zero();
two(§') r4-r11 saved.
return: Ir saved
} ’ fp saved to point to one above Ir in stack

// use r0-r3 as arguments
void two(void) two();
{ r4-r11, Ir restored

printf("main...one...two\n"); bx Ir (branches to Ir)

return; }

}

void zero(void)

{

return;

}

So, how does this stack up? (pun
intended)

Local variables

Caller-save registers

Args to One() main() “frame”

Aowdp Buiseardu)

undefined

undefined

114

Branch with Link occurs to one()

Processor copies PCinto LR
Sets PC = one() in memory

Local variables

Caller-save registers

Args to One()

main() “frame”

undefined

undefined

Aowdp Buiseardu)

115

ARM now executing first instruction in

Callee-save registers are pushed ()
onto stack using STMFD sp!, one

{registers} along with R14 (LR)

And R11/R7/R3(FP) can also be
updated relative to (R13)SP

Local variables

Caller-save registers

Args to One()

Aowap Buiseannu|

main() “frame”

LR = PC@main
@ One() “frame”

Callee-save registers

undefined

116

Local variables are also added to the

stack

ARM now executing second

instruction in one()

Local variables

Caller-save registers

Args to One()

main() “frame”

LR = PC@main

Callee-save registers

One() “frame”

undefined

Local variables

Aowdp Buiseardu)

117

PC now about to branch to two()

Local variables

Caller-save registers

Args to One()

LR = PC@main

Callee-save registers

Local variables

Aowdp Buiseardu)

main() “frame”

Caller-save registers

One() “frame”

Args to Two()

undefined

Caller-save registers for one() are saved.
Arguments to two are also pushed

118

Branch with Link occurs to two()

Processor copies PCinto LR
Sets PC = one() in memory

Local variables

Caller-save registers

Args to One()

LR = PC@main

Callee-save registers

Local variables

Caller-save registers

Args to Two()

main() “frame”

One() “frame”

Two() “frame”

Aowdp Buiseardu)

119

ARM now executes first instruction in

two()

Local variables

Caller-save registers

Args to One()

Callee-save registers

LR = PC@main()

Local variables

Aowdp Buiseardu)

main() “frame”

Caller-save registers

One() “frame”

Args to Two()

Two() “frame”

LR = PC@One()

Callee-save registers

Saves the callee-save registers
Also saves the R14(Link Register)

120

So, how did it stack up?

Similar to x86 in some ways.
However, R11(FP) is not really used much.
SP is updated using STMFD and LDMFD

Despite the return address being saved in the
LR, most often it is put on the stack and then
restored later directly into PC g“

Which may help you in Lab 3...

Current Program Status Register

* N - Negative flag

* Z - Zero flag
* C - Carry flag _Mode [4:0] [Mode
* V - Overflow flag 10000 User
* Q - Sticky overflow 10001 FIQ
e« I — 1: Disable IRQ mode 10010 IRQ
« F — 1: Disable FIQ mode 10011 SVC (Supervisor)
e T — 0: ARM state 10111 Abort
. 1: Thumb state 11011 Undefined
11111 System s

_MODE - Mode bits

Generic ARM Modes

User: Normal program execution mode
FIQ: used for handling a high priority (fast) interrupt
IRQ: used for handling a low priority (normal) interrupt

Supervisor: entered on board reset and when a
Software Interrupt instruction is executed

Abort: used for handling memory access violations

System: a privileged mode using same registers as User
mode

User & System Mode Ba N ked Reg|5te rS

ro
rl Banked registers are preserved across mode changes.
r2
r3
!
r5
ré
r7
r8
r9

FIQ Mode

IRQ Mode SVC Mode Undef Abort
Mode Mode

r13 (SP) r13 (SP) r13 (SP) r13 (SP)
r14 (LR) r14 (LR) r14 (LR) r14 (LR)

CPSR

SPSR SPSR SPSR SPSR SPSR*

Arm Processor modes

User: normal program execution mode
FIQ: used for handling a high priority (fast) interrupt
IRQ: used for handling a low priority (normal) interrupt

Supervisor: entered on reset and when SWI (software interrupt
instruction) is executed

Abort: used for handling memory access violations
Undefined: used for handling undefined instructions

System: a privileged mode that uses the same registers as the
user mode

ARMVvV7 Processor modes (Table B1-1)

Processor Encoding | Privilege | Implemented | Security State | Instruction/Condition

mode Level (if available)

User usr 10000 PLO Always Both

FIQ fiq 10001 PL1 Always Both INTERRUPT

IRQ irq 10010 PL1 Always Both INTERRUPT

Supervisor | svc 10011 PL1 Always Both SVC/SWI

Monitor mon | 10110 PL1 Security Secure only SMC/Secure Monitor
Extensions Call EXCEPTION
(TrustZone)

Abort abt 10111 PL1 Always Both Data/Prefetch Abort

EXCEPTION

Hyp hyp 11010 PL2 Virtualization | Non-secure HVC/EXCEPTION
Extensions only

Undefined | und | 11011 PL1 Always Both UNDEFINED

System Sys 11111 PL1 Always Both

126

Mode changing instructions

e SVC - SuperVisor Call or SWI - SoftWare
Interrupt

— Changes mode to Supervisor mode
* SMC - Secure Monitor Call

— Changes mode to Secure (with TrustZone)
 HVC — Hypervisor Call

— Changes mode supervisor (with hardware
virtualization extenstions)

Switching modes

Specific instructions for switching between
orocessor modes (SVC/SWI etc.)

HVC (Hypervisor call) only available with specific
nardware support

SMC (Secure Monitor call) also only available only
with specific hardware support (TrustZone)

MOVS PC, LR (copies SPSR to CPSR/APSR)

Linux kernel and other RTOS (“rich featured” OS)
run in Supervisor mode generally

Remember the SWI from Hello World?

Special instructions

* SUBS PC, LR, #=<imm>

— Subtracts #<imm> value from LR and branches to
resulting address

— |t also copies SPSR to CPSR

* MOVS PC, LR

— Same as above but branches to address in LR and
also copies SPSR to CPSR

* For use in returning to User/System mode
from exception/interrupt modes

How to read/write Status registers

CPSR and APSR value can be saved into
register

MSR — Move to Special register from ARM
core register

Example: msr <cpsr/apsr> <r0>

MRS — Move to ARM core Regsiter from
special register

Example: mrs <r0> <cpsr/apsr>

SCTLR Register

System Control Register: part of Coprocessor
CP15 registers

Allows controlling system wide settings such as:
— Mode (ARM/Thumb) for exceptions
— Base address for exception vector table

Not fully emulated in kvm/gemu
Different for different processor profiles

Controls exception handling configurations

— Whether exceptions should be handled in ARM state
or Thumb state

SCTLR Register

* These settings are only available on Cortex-R
and not on any others

— SCTLR.DZ = 0 means a Divide-by-Zero returns zero
result

— SCTLR.DZ = 1 means a Divide-by-Zero generates
and undefined instruction exception

— |E bit gives instruction endianness as implemented
and is READ ONLY

GNU Debugger (GDB) Intro

* The GNU debugger is a command line
debugging tool

* A graphical frontend is also available called
ddd

GNU Debugger (GDB) intro

Start gdb using:

— gdb <binary>

Pass initial commands for gdb through a file
— gdb <binary> —x <initfile>

For help

— help

To start running the program

— run or r <argv>

GDB initial commands

* One possible set of initial commands:

b main

run

display/10i Spc
display/x SrO
display/x Srl
display/x Sr2
display/x Sr3
display/x Sr4
display/x Sr5
display/x Sr6
display/x Sr7
display/x Sr11
display/32xw Ssp
display/32xw Scpsr

display/{format string} — prints the expression following
the command every time debugger stops

{format string} include two things:
Count —repeat specified number of {size} elements
Format — format of how whatever is displayed

X (hexadecimal), o(octal), d(decimal), u(unsigned
decimal), t(binary), f(float), a(address), i(instruction), c
(char) and s(string).

Size letters are b(byte), h(halfword), w(word), g(giant, 8
bytes).

These commands can be entered into the init file, and
helps to see the values in the registers after executing
each statement or set of statements.

GDB Breakpoints

* To put breakpoints (stop execution on a certain line)
— b <function name>
— b *<instruction address>
— b <filename:line number>
— b <line number>

 To show breakpoints
— info b

 To remove breakpoints
— clear <function name>
— clear *<instruction address>
— clear <filename:line number>
— clear <line number>

GDB examining variables/memory

Similar to display, to look at contents of
memory

o _”n

Use “examine” or “x” command

Xx/32xw <memory location> to see memory contents
at memory location, showing 32 hexadecimal words

X/5s <memory location> to show 5 strings (null
terminated) at a particular memory location

x/10i <memory location> to show 10 instructions at
particular memory location

GDB disassembly & listing things

* Can see disassembly if compiled with gdb
symbols option in gcc (-ggdb)
— disass <function name>

* Can see breakpoints

— info breakpoints

* Can see registers

— info reg

GDB stepping

* To step one instruction
— stepi or si
* To continue till next breakpoint

— Continue or c

* To see backtrace

— backtrace or bt

Lab 2 v
L

* Use of gdb and your knowledge of ARM assembly

to stop Dr. Evil
— gdb —x <initfile> bomb (Can optionally specify initial
commands file using —x)
— b explode _bomb() (breakpoint at explode _bomb)

— disass phase_1 (to see phase 1 code)
— info reg to see all registers

* Find the right inputs to defuse it
* GDB cheat sheet on /home/arm/Desktop

e Shift + PgUp to scroll up and Shift + PgDown to
scroll down

DAY 2 PART 1

Control Flow operations (Table A4-1)
nstruction | Description [Meaning

B <label> Branch to label PC = &label

BL <label> Branch to label with link register LR =PC+4
PC = &label

BLX <Rm or Branch exchange with link register LR = & of instr. after BLX instr.

#Himm> PC = Rm & OxFFFFFFFE
Thit=Rm &1

BX <Rm or Branch exchange LR = & of instr. after BLX instr.

#Himm> PC = Rm & OxFFFFFFFE
Thit=Rm &1

Source: http://www.slideshare.net/guest56d1b781/arm-fundamentals .

Control Flow operations (Table A4-1)

Description Thumb mode | ARM mode
range range

B <label> Branch to target address +/- 16 MB +/-32 MB

BL, BLX <imm> Call a subroutine +/-16 MB +/-32 MB
Call a subroutine, change instruction set

BLX <reg> Call a subroutine, optionally change Any Any
instruction set

BX Branch to target address, change Any Any
instruction set

CBz Compare and Branch on Zero (16-bit) +4 to +130 Does not exist
Permitted offsets are even from 0 — 126 bytes

CBNZ Compare and Branch on Nonzero (16-bit) +4 to +130 Does not exist
Permitted offsets are even from 0 — 126 bytes

TBB Table Branch (byte offsets) (32-bit) 0-510 bytes Does not exist

TBH Table Branch (halfword offsets) (32-bit) 0-131070 Does not exist

bytes

143

More LDR/STR instructions!

LDRB Rd, [Rm] — load byte at memory address in Rm
into Rd

STRB Rd, [Rm] — store byte from Rd into memory
address in Rm

LDRH Rd, [Rm] — load halfword at memory address in
Rm into Rd

STRH Rd, [Rm] — store halfword at memory address in
Rm into Rd

LDRSB Rd, [Rm] — load signed byte at memory address
in Rm into Rd (sign extend to 32 bits)

LDRSH Rd, [Rm] — load signed half-word at memory
address in Rm into Rd (sign extend to 32 bits)

Other “Misc.” instructions - Hints

PLD, PLDW [<reg>, <imm>] - Preload data from
memory at address in <reg> with offset of <imm>

PLI [<reg>, <imm>] — Preload instructions from
memory

DMB — Data memory barrier ensures order of
memory operations

DSB — Data Synchronization barrier ensures
completion of memory access operation

ISB —Instruction Synchronization barrier flushes
pipeline

More Misc. instructions

 SETEND BE/LE — Sets the endianness to Big
Endian or Little Endian for memory access
(only applies to data)

« SRS{DA|DB]|IA|IB} —Save Return State saves
the LR and SPSR of one mode into the stack
pointer of another mode

User & System Mode Ba N ked Reg|5te rS

ro
rl Banked registers are preserved across mode changes.
r2
r3
!
r5
ré
r7
r8
r9

FIQ Mode

IRQ Mode SVC Mode Undef Abort
Mode Mode

r13 (SP) r13 (SP) r13 (SP) r13 (SP)
r14 (LR) r14 (LR) r14 (LR) r14 (LR)

CPSR

SPSR SPSR SPSR SPSR SPSR’

|s timing important?

I™ JUST QUTSIDE ToWN, SO T SHOULD
BE THERE N FIFTEEN MINUTES.
\

ACTUALLY, ITS LOOKING
MORE LIKE SIX DAYS.
|

NO, WAIT, THIRTY SECONDS.

/

OSEN
0w

THE AUTHOR OF THE WINDOWS FILE.
COPY DIALOG VISITS SOME FRIENDS.

Source: http://xkcd.com/612/

148

PBX-A9 Memory Map

Figure 4.1. System memory map for standard peripherals

OXFFFFFFFF

CS7 reserved for expansion

Reserved

System Controller 1

Tile Site 0X5C000000-OXSFFFFFF
CS6 reserved for expansion
exci 0Xx58000008-0X5BFFFFFF
ox PCl Interface CS5 reserved for expansion
0X54000000-0X57FFFFFF
Ox80000000 _C_Si ED_R _S[lthi CS4 reserved for expansion
CS0 DDR SDRAM ox OX53FFFFFF
©X70000000 CS3UsB
OX66000000 PCI Interface OX4FOODRRE-OX4FFFFFFF
CS3 Ethernet
SMC | BX4EOOBOOR-OX4EFFFFFF
ox CS3 Config Flash reserved for
expansion
0X20000000 TC DDR2 Ox4COPELOR-OX4DFFFFFF
ox1Feepepe || C Peripherals CS2 Cellular RAM
GX1E646000 Reserved OXx48000000-OX4BOPOOOO
GIC 2 & 3 (tile site) CS1 NOR flash
OX1E620608 Y] — ©X44000000-0X47FFFFFF
©X1E000000 (not used)
CS0 NOR flash
Reserved 0Xx40000000- OX43FFFFFF
OXx18003FFF
©x18000000 CompactFlash
©X100E4000 Reserved
oxioeezoee | APBReEgs (Misc)
©X100E2000 iedal
OX100E1000 SMC Configuration
OX100EQD00 DMC Ceonfiguration
©Xx10080000 Reserved
0x10060000 Onboard SRAM
©X10840000 Sl
OX10030000 DMAC Conﬁguratfon
0x10020000 CLCD Configuration
OX10000000 FPGA Peripherals Memory at
OX00000PRE-OXO3FFFFFF
D?n?irrsgmM / can be remapped to NOR flash
0x00000000

Source: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0440b/Bbajihec.html

Timers6 &7

Timers4 &5

RTC

SB Control (DVI)

GPIO 2

GPIO 1

GPIO0

Timers2 & 3

Timers0 & 1

Watchdog 1

Watchdog 2

SCI

SSP

UART 3

UART 2

UART 1

UART 0

Display

KMI 1

KMI 0

MCI

AACI

Reserved

3-wire Interface

System Controller 0

System Registers

149

Watchdog timer

* Usually used in embedded systems scenarios

* A hardware timer that hard resets the system when it
reaches zero

* Up to system designer to make sure counter does not
reach zero

* Timer accessible through register
e Reset @ critical code sections where deadlocks can occur

Figure 1: A typical watchdog setup

) Reset
[[Watchdog Timer J
+ / Processor
I Restant \ T ’
Clock

Source:
http://www.eetimes.com/discussion/beginner-s-corner/4023849/Introduction-to- 150
\AMAa+t~rhAAa_Timare

This week at the IEEE Real-Time Systems Symposium | heard a fascinating

keynote address by David Wilner, Chief Technical Officer of Wind River

Systems. Wind River makes VxWorks, the real-time embedded systems kernel
I n t e r r u p t S & that was used in the Mars Pathfinder mission. In his talk, he explained in

detail the actual software problems that caused the total system resets of

the Pathfinder spacecraft, how they were diagnosed, and how they were

W a t C h d O g ti m e rS solved. | wanted to share his story with each of you.

VxWorks provides preemptive priority scheduling of threads. Tasks on the
Pathfinder spacecraft were executed as threads with priorities that were

° I S it WO rt h it ’p assigned in the usual manner reflecting the relative urgency of these tasks.
e

Pathfinder contained an "information bus", which you can think of as a
shared memory area used for passing information between different components

® IVI e a n t fo r m a i n Iy of the spacecraft. A bus management task ran frequently with high priority

to move certain kinds of data in and out of the information bus. Access to

R I O S the bus was synchronized with mutual exclusion locks (mutexes).

The meteorological data gathering task ran as an infrequent, low priority
thread, and used the information bus to publish its data. When publishing

¢ H e I p S re C Ove r fro m its data, it would acquire a mutex, do writes to the bus, and release the

mutex. If an interrupt caused the information bus thread to be scheduled

i n C O n S i St e n t St a t e while this mutex was held, and if the information bus thread then attempted
to acquire this same mutex in order to retrieve published data, this would
cause it to block on the mutex, waiting until the meteorological thread

released the mutex before it could continue. The spacecraft also contained
¢ H Oweve r SySt e m a communications task that ran with medium priority.
d e S i g n e r h a S t O Most of the time this combination worked fine. However, very infrequently

it was possible for an interrupt to occur that caused the (medium priority)
. Ve ° communications task to be scheduled during the short interval while the

S p e C I fy C O n S I St e n t (high priority) information bus thread was blocked waiting for the (low
priority) meteorological data thread. In this case, the long-running

St a t e ” communications task, having higher priority than the meteorological task,
would prevent it from running, consequently preventing the blocked
information bus task from running. After some time had passed, a watchdog
timer would go off, notice that the data bus task had not been executed for

Sou rce: some time, conclude that something had gone drastically wrong, and initiate

http://catless.ncl.ac.uk/Risks/19.49.htm| ' s¥stemresee 151

Interrupts introduction

* Interrupts
— can be synchronous (software generated)
— can be asynchronous (hardware generated)
— Literally interrupt the control flow of the program

* Generated when
— System power off/reset
— Undefined instruction
— Non-aligned memory access
— Non-readable memory access
— Page faults

Interrupt handlers

Referred to as ISR or Interrupt Service Routine

Use masks in registers to enable/disable
Interrupts

Section in memory that has addresses to ISRs
called an Interrupt Vector table (usually
located at 0x00000000)

Wire the handler by writing code directly at
location in memory or roll your own lookup
table code and insert into vector table

Interrupt Wiring
Exceptiontype | Mode | VectorAddress | Priority

Reset Supervisor
Data Abort Abort

FIQ (Fast FIQ
Interrupt)

IRQ (Normal IRQ
Interrupt)

Prefetch Abort Abort

Sofware Interrupt Supervisor
(SWI/SVC)

Undefined Undefined
instruction

0x00000000
0x00000010
0x0000001C

0x00000018

0x0000000C
0x00000008

0x00000004

1 (highest)

2

3

6 (lowest)

154

0x1C
0x18
0x14
0x10
0x0C
0x08

0x04

0x00

Interrupt vector table

FIQ

IRQ

RESERVED

DATA ABORT

PREFETCH ABORT

SWI

UNDEFINED

RESET

0x6C

0x70

—> LDR PC, PC, #100

SWI Handler

SWI Handler Code here...

155

Current Program Status Register

I - 1: Disable IRQ mode
F — 1: Disable FIQ mode
T — 0: ARM state

1: Thumb state
_MODE - Mode bits

10000
10001
10010
10011
10111
11011
11111

IRQ

SVC (Supervisor)
Abort
Undefined

System

156

Interrupt handlers II

 When an exception occurs, processor
— Copies CPSR into SPSR_<mode>

— Changes CPSR bits to reflect new mode, and (ARM/Thumb)
state

— Disables further interrupts if appropriate
— Stores PC + 4 (ARM) or PC + 2 (Thumb) in LR_<mode>
— Sets PC to address from vector table corresponding to exception

* When returning from an ISR
— System developer needs to restore CPSR from SPSR_<mode>
— Restore PC from LR_<mode>
— Both can be done in one instruction MOVS PC, LR

Interrupt handlers Il

* When IRQ exception occurs, only IRQs are
disabled

 When FIQ exception occurs, both IRQs and
FIQs are disabled

* Generally each exception mode’s LR has

previous PC + 4 (except for Data abort
exception)

* Data abort exception mode’s LR has previous
PC + 8 (ARM & Thumb)

Source: http://www.csie.nctu.edu.tw/~wjtsai/EmbeddedSystemDesign/Ch3-1.pdf

Sample IRQ Handler

 |RQ_Handler (ARM mode):

STMFD sp!, {r0-r12,Ir}

BL ISR _IRQ @ Go to second level IRQ handler
SUB Ir, Ir, #4

LDMFD sp!, {rO-r12,Ir}*

SUBS pc, Ir, #4

Sample FIQ Handler

e FIQ Handler

SUB Ir, Ir, #4

STMFD sp!, {rO-r7,Ir}

@ Renable any interrupts needed here

MRS RO, CPSR

CMP R1, #0x00000012 ; Test for IRQ mode

BICNE RO, RO, #0x80 @ Optionally renable IRQs here
@ Handle FIQ event here

LDMFD sp!, {rO-r7,Ir}*

SUBS pc, Ir, #4

SWI (Software interrupt) handler
wiring
Most hardware define vector tables indexed
by exception type.
SWI handler address usually at 0x08
As was seen earlier, Linux syscalls use SWI

SWI encoding allows for 24-bit comment,
which is generally ignored

Can be used for differentiating b/w types of
SWI

SWI handler wiring contd...

SWI 0x18 -> 0x08 LDR PC, PC, 0x100 -> S_Handler

SWI instruction is stored in
LR_<Mode>

Encoded with the 24-bit value

Mask that 24-bit value into rQ
Branch to SWI Handler

Run the appropriate handler
based on that value

0x108 STMFD sp!, {r0-r12, Ir}

0x10c MOV r1, sp

0x110 LDR rO, [Ir, #-4]

0x114 BIC r0, r0, #0xff000000
BL C_SWI_HANDLER
LDMFED sp!, {rO-r12, Ir};
MOVS pc, Ir

void C_SWI_Handler(int swi_num, ...)

{

switch(swi_num) {
case 0x00: service_ SWI1();
case 0x01: service_SWI2();

Lab 3

Interrupts lab
Emulating a serial driver using UART

In order to see something interesting in this
lab, we take the input character and add 1 to
it

Modify inter.c and vectors.S files

Add one or more lines where it says

— /* ADD CODE HERE */

Inter.c

void __ attribute _ ((interrupt)) irg_handler() {
/* echo the received character + 1 */
UARTO0 DR = UARTO0 DR + 1;

}

164

reset_handler:

[* set Supervisor stack */
LDR sp, =stack_top

[* copy vector table to address 0 */
BL copy_vectors

I* get Program Status Register */
MRS r0, cpsr

I* go in IRQ mode */

BIC r1, r0, #0x1F

ORR r1, r1, #0x12

MSR cpsr, r1

I* set IRQ stack */

LDR sp, =irq_stack top

I* Enable IRQs */

BIC r0, r0, #0x80

[* go back in Supervisor mode */
MSR cpsr, r0

[* jump to main */

BL main

B.

vectors.S

165

Current Program Status Register

I - 1: Disable IRQ mode
F — 1: Disable FIQ mode
T — 0: ARM state

1: Thumb state
_MODE - Mode bits

10000
10001
10010
10011
10111
11011
11111

IRQ

SVC (Supervisor)
Abort
Undefined

System

166

ARM ELF Format

ELF Header

Anit

text

.rodata

.data

.bss

.symtab

.rel.text

.rel.data

.debug

Jdine

.strtab

Section header table

Read-only Code segment

Read/write Data segment

Symbol table and debugging
info NOT loaded into

memory

167

ARM ELF Format

.text — has your code

.rodata — has constants and read-only data
.data — has your global and static variables
.bss — contains uninitialized variables

Heap starts after .bss section in memory
grows towards increasing memory

Stack starts at the opposite end and grows
toward heap

text
.rodata
.data
.bss

.symtab

rel.text

.rel.data

.debug

Jdine

.strtab

ARM ELF Format

Program instructions and data

Read-only data like format strings for printf
Initialized global data

Un-initialized global data

This section has the symbol information such as global
variables and functions

List of locations in the .text that linker needs to determine
when combining .o files

Relocation information for global variables

Debugging informations (such as the one turned on with gcc
—8)

Mapping b/w line numbers in C program and machine code
(debug)

String table for symbols in .symtab and .debug

How to perform a control hijack

 We can write to the SP given a vulnerable
function (strcpy or memcpy with no bounds
check into local variable)

 ATPCS as we saw requires args to be passed in
through RO-R3

* For popping a shell we can make a system()
with arguments containing string “/bin/sh”

ARM now executing first instruction in

Callee-save registers are pushed ()
onto stack using STMFD sp!, one

{registers} along with R14 (LR)

And R11/R7/R3(FP) can also be
updated relative to (R13)SP

Local variables

Caller-save registers

Args to One()

Aowap Buiseannu|

main() “frame”

LR = PC@main
@ One() “frame”

Callee-save registers

undefined

171

Itzhak Avraham’s approach

e Use areturn to libc style method
e We can overwrite LR in stack

e Return to a function that contains instructions
to pop values from stack into RO (containing
our “/bin/sh” address) and another LR in stack

pointing to system()
* The above function that contains this code for
us is erand48()

Source: https://media.blackhat.com/bh-dc-11/Avraham/BlackHat DC 2011 Avraham-Popping Android Devices-Slides.pdf

Stack

4
erand48()+x: > string E::e /bin/sh” string 5
&system() Point to system() g
POP PC, LR &
Junk Junk value 2
SRR R1 R1: Can be junk 3
LDRD RO, R1 RO for system() RO: Point to /bin/sh .
LR Point to erand48()+x
Register val Callee saved register(s)
Buf[5]
Buf[5]

173

Lab 4

* Control flow hijack lab

— Objective: Get a shell using return to libc style
attack

— Itzhak Avraham’s paper included

e Other useful links:

— http://research.shell-storm.org/files/research-4-
en.php

174

Lab 4 Notes

* IMPORTANT:

— echo 0 > /proc/sys/kernel/randomize_va_space

* |[n gdb you can breakpoint and run

* p str// Gets address of /bin/sh string
p erand48 // Gets address of erand48 method
p system // Gets address of the system method

e Remember to add 1 to the erand48 address (thumb?2
instruction set requires LSB to be 1)

To verify run x/s <enter address from previous>

Lab 4 Notes contd...

* To craft your exploit string run:

— perl —e ‘print “ABCD”x3 . “\xAB\XxCD\xDE\xEF" .
“EFGH”’ > solution

— gdb ./boverflow

— “b stagel” or whatever is in your init commands
file

— run cat solution’

Possible Solution

My erand48+x located at Ox76F28E56 + 1
My system located at Ox76F2D768 +1

My “/bin/sh” passed in through string located
at OX/7EFFF6ES

As per the stack diagram | need “ABCD”x3 +
Ox578EF276 + OXE8F6FF7E + “EFGH” + “IJKL"” +
0x69D7F276 + “/bin/sh”

DAY 2 PART 1.5

Code Optimization

Ok we can write assembly and C programs

However, do we know what really happens to
that C program once we give it to the
compiler?

We assume certain things happen for us
For example, dead code is removed

However with great compilers comes great
responsibility...

GCC Optimizations

* Can optimize for code size, memory usage

e Usually compiler knows best, however can also
be NOT what system designer has in mind.

int func1(int *a, int *b) int func2(int *a, int *b)
{ {

*a += *b; *a += ((*b)<<1);

*a += *b; }
}

* We can help compiler decide

 For more evil C, checkout
http://www.steike.com/code/useless/evil-c/

Source: Bryan, R., O’Hallaron, D. “Computer Systems: A Programmer’s Perspective”

GCC optimizations 2

e Common sub-expression elimination
* Dead code removal

— Use ifdefs helps compiler eliminate dead code
* |Induction variables & Strength reduction

* Loop unrolling

— Increases code size, but reduces the number of
branches

* Function inlining
— Again can reduce number of branches
— In C code, add __inline before function spec

Source: http://gcc.gnu.org/onlinedocs/

ARM specific optimizations

Use of constants using barrel shifter:
— Instead of 5*x, use (x<<2) + x

Use of conditional execution to reduce code size and execution
cycles

Count down loops
— Counting upwards produces ADD, CMP and B{x} instructions
— Counting downwards produces SUBS & BGE

Use 32-bit data types as much as possible

Avoid divisions or remainder operation (%)

Register accesses more efficient than memory accesses

— Avoid register spilling (more parameters than registers end up in
memory on stack)

Use pure functions when possible and only if they do not have side
effects

ARM specific optimization: Count

int checksum(int *data) int checksum(int *data)
{ {
unsigned i; unsigned i;
int sum = 0; int sum = 0;
for(i=0; i<64; i++) for(i=63; i>=0; i--)
sum += *data++; sum += *data++;
return sum; return sum;
Y Y
MOV r2, r0 ; r2=data
MOV r0 #0 ; sum=0 MOV r2, r0 ; r2=data
MOV r2, r0 : r2=data MOV r0, #0 : sum=0
r0, MOV r1, #0; i=0 MOV r1, #0x3f ; i=63
L1 LDR r3,[r2],#4 ; r13="(data++) L1 LDR r3,[r2],#4 ; r3=*(data++)
ADD r1, r1, #1 ; 1=i+1 ADD r0, r3, r0 : sum +=r3
CMP r1, 0x40 ,cmp r1, 64 SUBS r1, r1, #1 i--, set flags
ADD r0, r3, r0 ; sum +=r3 BGE L1 ;ifi >=0, goto L1
BCC L1 , if i <64, goto L1 MOV pc, Ir - return sum

MQV pc, Ir : return sum

ARM specific optimization: 32-bit data
types

void t3(void) void t4(void)
{ {
char c; int c;
int x=0; int x=0;
for(c=0;c<63;c++) for(c=0;c<63;c++)
X++; X++,
} }
MOV r0,#0 ; x=0
MOV r1,#0 ; ¢c=0
L1 CMP r1,#0x3f ; cmp ¢ with 63
BCS L2 ; if c>= 63, goto L2
ADD r0,r0,#1 P X++;
ADD r1,r1,#1 ; C++
AND r1,r1,#0xff ; c=(char) r1
B L1 : branch to L1

L2 MOV pc,r14

ARM specific optimization: function
calls

void test(int x) {
return(square(x*x) + square(x*x));
}

v

void test(int x) {
return(2*square(x*x));
}

The following case shows square() has a side effect:
int square(int x)
{
counter++; /* counter is a global variable */
return(x*x);

}

If no side effect, declare as pure function for compiler to optimize
__pure int square(int x);

ARM specific optimization: code

alignment
* Structure/Code alignment
struct struct
{ {
char a; char a;
int b; char c;
char c; short d;
short d; int b;
¥ ¥
* 12 bytes vs. 8 bytes

* Could use packed keyword to remove padding

* However ARM emulates unaligned load/store by
using several aligned byte access (inefficient)

DAY 2 PART 2

Writing assembly in whatever your
editor may be...

nano? REAL HEY. REAL WELL, REAL | | NO, REAL | [REAL PROGRAMMERS EXCUSE ME, BUT
PROGRAMMERS PROGRAMMERS | | PROGRAMMERS | | PROGRAMMERS | [USE A MAGNETIZED REAL PROGRAMMERS
USE emocs USE vim. VSE ed. USE cat. NEEDLE AND A USE BUTTERFLIES.
} | | STEADY HAND.
Q | ’
THE DISTURBANCE RIFPLES ~ WHICH ACT AS LENSES THAT [\icEl
THEYOPEN THEIR OUTWARD, CHANGING THE FLOW DEFLECT INCOMING COSMIC ;
HADS D LET T COURSE, THERES AN EMACS
HE | OF THE EDDY CURRENTS RAYS, FOCUSING THEM TO COMMAND TO DO THAT,
DELICATE WINGS FLAPONCE.| |N THE UPPER KWK)SPHER‘-‘ STRIKE THE DRIVE PLATTER . ,
— AND FLIP THE DESIRED) BIT: OH YEAH! GOOD O
— e Cxﬁcnbuﬁerfg
N
i K %

THESE CPUSE MOMENTARY POO(ETS

OF HIGHER-PRESSURE. AIRTO FORM,

Source: http://xkcd.com/378/

DAMAIT, ENACS.

188

Inline assembly (using butterflies)

* Follows the following form:

asm(code : output operand list : input operand list: clobber list);

* The input/output operand list includes ¢ and
assembly variables

* Example:
/* Rotating bits example */
asm("mov %[result], %[value], ror #1" : [result] "=r" (y) : [value] "r" (x));
° ll=rll
ris referred to as a constraint

= is referred to as a modifier

Source: http://www.ethernut.de/en/documents/arm-inline-asm.html

m Usage in ARM state Usage in Thumb state

I @@ T M

Floating point registers f0..f7

Not Available

Immediate floating point constant
Same a G, but negated

Immediate value in data processing instructions
e.g. ORR RO, RO, #operand

Indexing constants -4095 .. 4095
e.g. LDR R1, [PC, #operand]

Same as |, but inverted

Same as |, but negated

Same asr

Constant in the range of 0 .. 32 or a power of 2
e.g. MOV R2, R1, ROR #operand

Any valid memory address

Not available

Not available

General register r0 .. r15
e.g. SUB operand1, operand2, operand3

Vector floating point registers s0 .. s31

Any operand

Not Available
Registers r8..r15
Not available
Not available

Constant in the range 0 .. 255
e.g. SWI operand

Constant in the range -255 .. -1
e.g. SUB RO, RO, #operand

Same as |, but shifted

Constant in the range -7 .. 7
e.g. SUB RO, R1, #operand

Registers r0..r7
e.g. PUSH operand

Constant that is a multiple of 4 in the range of 0 .. 1020
e.g. ADD RO, SP, #operand

Constant in the range of 0 .. 31
e.g. LSL RO, R1, #operand

Constant that is a multiple of 4 in the range of -508 .. 508
e.g. ADD SP, #operand

Not available

Not available

190

Source: http://www.ethernut.de/en/documents/arm-inline-asm.html

Modifiers

e =js write-only operand, usually for all output
operands

* +is read-write operand, must be listed as an
output operand

* & is aregister that should be used for output
only

Source: http://www.ethernut.de/en/documents/arm-inline-asm.html

Example 6.c

int main(void)
{
int a, b;
a=0;
asm(“mrs %[result], apsr”: [result] “=r” (x) :);
b=a-182947;
asm(“mrs %[result], apsr”: [result] “=r” (y) :);

printf("a's negatory is %d\n", b);

return O;

Before the subtraction operation
APSR = 0x60000010
After the subtraction operation

APSR = 0x80000010

0000838c <main>:

838c: b590
838e: b085
8390: af00
8392: f04f 0306
8396: 60fb
8398: f3ef 8400
839c: 60bc
83%e: 68fa
83a0: 243 535d
83a4: fbcf 73fd
83a8: 18d3
83aa: 607b
83ac: f3ef 8400
83b0: 603c
83b2: 248 4344
83b6: f2c0 0300
83ba: 4618
83bc: 6879

push
sub
add
mov.w
str
mrs
str
ldr
movw
movt
adds
str
mrs
str
movw
movt
mov
|dr

{rd, r7, Ir}

sp, #20

r7, sp, #0

r3, #6

r3, [r7, #12]

r4, CPSR

r4, [r7, #8]

r2, [r7, #12]

r3, #13661 ; 0x355d
r3, #65533 ; Oxfffd
r3, r2, r3

r3, [r7, #4]

r4, CPSR

r4, [r7, #0]

r3, #33860 ; 0x8444
r3, #0

ro, r3

r1, [r7, #4]

Writing C functions in assembly

* |n Cfile, sayitis called isawesome.c, declare the function:
extern int mywork(int arg1, char arg2, ...);

* |n assembly include
.syntax unified @ For UAL
.arch armv’/-a
text
.align 2
thumb
thumb_func
.global mywork
type mywork, function
@ CODE HERE
.Size mywork, .-mywork
.end

* In make file use gcc —c —o mywork.o mywork.s
* Finally gcc —o awesomeprogram mywork.o isawesome.o

Source: http://omappedia.org/wiki/Writing ARM Assembly

Event handling

WFE — Wait for Event, wakes up when either of
following happens:

— SEV is called

— A physical IRQ interrupt

— A physical FIQ interrupt

— A physical asynchronous abort

SEV — Send Event
See B 1.8.13 in manual for more details
Used with spin-locks

Exclusive instructions

LDREX{B|D|H} <regl> <Rm>
— Load exclusive from Rm into <regl> T
STREX{B|D|H} <regl> <reg2> <Rm>]/

— Store exclusive from <reg2> into <Rm> and write to <regl>
with O if successful or 1 if unsuccessful

Both introduced since ARMv6
SWP & SWPB — Used on ARMv6 and earlier now
deprecated

— |t is read-locked-write

— However does not allow for operations between the read
lock and write

— At that point you use LDREX/STREX

Exclusive instructions contd...

* No memory references allowed between LDREX
and STREX instructions

 However after starting exclusive access using
LDREX, can disengage using CLREX instruction

 Use of DMB (Data Memory Barrier) in between
exclusive accesses
— Ensures correct ordering of memory accesses

— Ensures all explicit memory accesses finish or
complete before explicit memory access after the
DMB instruction

ob'd

Lab 5 T

e Atomic lab

— Implement a simple mutex in assembly with
threads in C

* Given code that uses libpthread to do
threading

* Creates two threads which use dosomething()
to do work

Lab 5

* Pseudocode for mutex_lock:
— Load locked value into a temp register
— Loop:
* LDREX from [rO] and compare to unlocked value
* If [rO] contents have the unlocked value

* STREX value in temp variable into [rO]
* If not successful goto loop

* To load locked value, you can use
|dr r2, =locked

* Pseudocode for Mutex unlock
— Load =unlocked value into a temp register
— Store value from temp register into [rO]

Possible solution

.equ locked, 1
.equ unlocked, 0

.global lock_mutex
type lock_mutex, function

lock_mutex:

.L1:

Idr r1, =locked

Idrex r2, [r0]

cmp r2, #0
strexeq r2, r1, [r0]
cmpeq r2, #0

bne .L1

bx Ir

.Size lock_mutex, .-lock_mutex

@.align 2
@.thumb
@.thumb_func

.global unlock_mutex
type unlock_mutex, function
unlock _mutex:
Idr r1, =unlocked
str r1, [r0]
bx Ir
.size unlock_mutex, .-unlock_mutex

Assembly on iPhone

e ForiPhone:

— Can use Inline assembly as we saw above in
Objective-C code

— Include the assembly source file in XCode

— Have not experimented with Xcode and assembly

— iPhone ABI Link:

e http://developer.apple.com/library/ios/
documentation/Xcode/Conceptual/
iPhoneOSABIReference/iPhoneOSABIReference.pdf

Source:
200

Assembly on Android

* For Android:
— Need to use Android Native Development Kit (NDK)

— Write a stub code in C that calls assembly method and
uses JNI types

— Write a make file or copy a template and include the
new assembly file and the stub-code C file

— Use NDK tool ndk-build to build

— In Android application declare the method using same
signature using Java types and mark as native

* public native int myasmfunc(int param1);

— Also load the assembly jni-library
e System.loadlibrary(“library-name-here”);

Source:
http://www.eggwall.com/2011/09/android-arm-assembly-calling-assembly.html

Summary

* We covered:
— How boot is handled on ARM platforms

— Some mechanics of ARM assembly and how to debug
it using GDB

— How programs are converted to assembly and run
including ATPCS along with control flow hijack
vulnerabilities

— Other features of ARM platforms including interrupts
and atomic instructions

— How to write inline assembly in C and how to write C
functions in assembly (for use in C source)

Useful links

ARM GCC Inline Assembler cookbook

— http://www.ethernut.de/en/documents/arm-inline-asm.html
Writing ARM assembly

— http://omappedia.org/wiki/Writing ARM_Assembly
ARM architecture diagrams:

— http://www.eng.auburn.edu/~agrawvd/COURSE/E6200 Fall08/
CLASS TALKS/armcores.ppt

How to build the emulator:

— https://developer.mozilla.org/en/Developer Guide/
Virtual ARM Linux environment

GCC manual (ARM optimization options):
— http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

203

