
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

UEFI	
 Reverse	
 Engineering	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

And	
 the	
 people	
 yelled:	

3	

WE	
 WANT	
 TO	
 ANALYZE	

SOME	
 CODE!	

WE	
 WANT	
 TO	
 ANALYZE	

SOME	
 CODE!	

WE	
 WANT	
 TO	
 ANALYZE	

SOME	
 CODE!	

WE	
 WANT	
 TO	
 ANALYZE	

SOME	
 CODE!	

WE	
 WANT	
 TO	
 ANALYZE	

SOME	
 CODE!	

WE	
 WANT	
 TO	
 ANALYZE	

SOME	
 CODE!!!1!	

•  Find	
 some	
 subset	
 of	
 interesEng	
 code	

–  You	
 could	
 search	
 for	
 B/D/F	
 address	
 of	
 interest	

•  But	
 beBer	
 is	
 to	
 narrow	
 down	
 what	
 you	
 want	
 to	
 look	
 at,	
 by	

slicing	
 and	
 dicing	
 the	
 firmware	
 filesystem	
 with	
 one	
 of:	

•  EFIPWN	

–  hBps://github.com/G33KatWork/EFIPWN	

•  UEFITool	

–  hBps://github.com/LongSo`/UEFITool	
 	

•  UEFI	
 Firmware	
 Parser	

–  hBps://github.com/theopolis/uefi-­‐firmware-­‐parser	
 	

–  We're	
 not	
 going	
 to	
 cover	
 this	
 for	
 now,	
 since	
 I	
 haven't	
 built	
 it	
 on	

Windows	
 yet	

4	

Simmer	
 down	
 y'all.	

I	
 reckon	
 what	
 ya	
 best	
 do	
 is…	

Firmware Storage

•  UEFI utilizes the physical flash device as a storage repository
•  Comprised of 4 basic components:

–  Firmware Device
–  Firmware Volume
–  Firmware File System
–  Firmware Files

SPI	
 Flash	

UEFI/BIOS	

Flash	
 Descriptor	

Gigabit	
 Ethernet	

Plaeorm	
 Data	

Management	
 Engine	

Firmware	
 Device	
 refers	
 to	
 the	
 flash	
 chip	

5	

Firmware Volumes (FVs)

•  A Firmware Device is a physical component such as a flash chip.
•  We mostly care about Firmware Volumes (FVs)
•  We often see separate volumes for PEI vs. DXE code

–  And occasional “duplicate” volumes for restore-from-backup
•  FVs can contain multiple firmware volumes (nesting)
•  FVs are organized into a Firmware File System (FFS)
•  The base unit of a FFS is a file

SPI	
 Flash	

UEFI/BIOS	

Flash	
 Descriptor	

Gigabit	
 Ethernet	

Plaeorm	
 Data	

Management	
 Engine	

Firmware	
 Volume(s)	

FV does not
have to align
with the start
of the BIOS
region as

configured in
the Flash
Descriptor

FV0	

FV1	

6	

Firmware File System (FFS)

•  FVs are organized into a Firmware File System (FFS)
•  A FFS describes the organization of files within the FV
•  The base unit of a FFS is a file
•  Files can be further subdivided into sections

FV1	

FV0	

FFS	

7	

Firmware Files

•  We mostly care about file sections that are in PE (Portable
Executable) file format
–  Alternatively can be a TE (Terse Executable) which is a “minimalist” PE
Oh,	
 how	
 interesEng!	
 My	
 BIOS	
 uses	
 "Windows"	
 executables?	
 I	
 know	
 how	
 to	
 analyze	
 those!	
 Oh,	
 how	
 interesEng!	
 My	
 BIOS	
 uses	
 "Windows"	
 executables?	
 I	
 know	
 how	
 to	
 analyze	
 those!	

A	
 standard	
 way	
 of	
 puong	
 together	

the	
 firmware	
 filesystem,	
 with	
 nice	

human	
 readable	
 names,	
 makes	
 it	

easier	
 for	
 me	
 to	
 find	
 my	
 way	
 around	

to	
 the	
 likely	
 locaEons	
 I	
 want	
 to	
 aBack	

A	
 standard	
 way	
 of	
 puong	
 together	

the	
 firmware	
 filesystem,	
 with	
 nice	

human	
 readable	
 names,	
 makes	
 it	

easier	
 for	
 me	
 to	
 understand	
 the	

context	
 of	
 what	
 might	
 have	
 been	

aBacked	
 if	
 I	
 see	
 a	
 difference	
 there	

Yay	
 StandardizaEon!	

UEFITool/UEFIExtract	

•  The	
 best	
 and	
 most	
 up-­‐to-­‐date	
 firmware	

filesystem	
 parser	

10	

11	

Go	
 to	
 File-­‐>Open	
 and	
 select	
 the	
 file	
 dump	
 (I	
 selected	
 the	
 "e6430A03.bin")	

NavigaEon	
 by	
 expanding	

porEons	
 here	

Parsed	
 metadata	
 here	

Here	
 it's	
 interpreEng	
 the	

Flash	
 Descriptor	
 and	

telling	
 us	
 which	
 regions	

the	
 BIOS	
 can	
 access	

This	
 volume	
 holds	
 a	
 bunch	
 of	
 PEIMs	
 (and	
 the	
 one	
 above	
 it	
 a	
 bunch	
 of	
 DXE	
 drivers.)	

"AmgTcgPlaeormPeiBeforeMem"	
 is	
 the	
 PEIM	
 we're	
 going	
 to	
 be	
 interested	
 in	
 shortly	

	

To	
 get	
 a	
 well-­‐formed	
 PE	
 file,	
 we	
 extract	
 it	
 by	
 right	
 clicking	
 and	
 selecEng	
 "Extract	
 body"	

14	

UEFIExtract	
 is	
 a	
 simple	
 command	
 line	
 tool	
 that	
 just	
 dumps	
 everything	

out	
 to	
 the	
 filesystem	
 instead	
 of	
 making	
 it	
 navigable	
 from	
 a	
 GUI	

The	
 metadata	
 will	
 be	
 stored	
 off	
 to	
 the	
 side	

in	
 .txt	
 files	

15	

This	
 is	
 good	
 if	
 you	
 want	
 to	
 search	
 all	
 the	
 files	
 for	
 a	
 paBern.	
 But	
 it's	
 less	

easy	
 to	
 navigate	
 if	
 you	
 want	
 to	
 just	
 get	
 a	
 single	
 file	
 (in	
 that	
 case	
 just	
 use	

the	
 GUI)	

Identifying Changes in BIOS (bios_diff.py)

•  So as we know, Copernicus provides us the full dump of the
BIOS flash
–  Repeated from previous: Copernicus maintains the FLA offsets for each

region by reading even those which the CPU/BIOS master has no
permissions to read (like the Management Engine, typically)

–  Any BIOS dump should work as long as it’s a UEFI BIOS (structured for
better parsing)

•  Comparing BIOS dumps over a period of time can provide
change detection

•  How this differs from observing the TPM PCR registers is this:
•  When a PCR tells you a change has been made, it cannot tell

you where the change has been made
•  Bios_diff.py uses the decomposition capability of EFIPWN to

tell us the particular module(s) in which the change(s) is/are
located

16	

Identifying Changes in BIOS (bios_diff.py)

•  This script uses EFIPWN to parse and diff the modules
between two BIOS dumps

•  EFIPWN decomposes the BIOS into its firmware volumes
(FVs) and then decomposes each into the files/modules that
comprise it

•  In this example we’re analyzing an earlier “known-good” BIOS
with one which we notice has changed
–  We took a known good and purposefully made a small change in the

“suspicious” one

17	

Identifying Changes in BIOS (bios_diff.py)

•  The script has found a difference located in firmware volume 3
•  Some files/modules have user-friendly names and if this is the

case the script outputs this name
•  AmiTcgPlatformPeiBeforeMem
•  Tcg could be Trusted Computing Group and this is likely a

PEIM that executes before memory is established

18	

Identifying Changes in BIOS (bios_diff.py)

•  If more than 1 diff is found they will all be listed here in this
manner

•  In this case it is just a single diff found
•  Diff was found at offset 0x40C in the file

“AmiTcgPlatformPeiBeforeMem”
•  The length of the diff is 7 bytes

19	

Identifying Changes in BIOS (bios_diff.py)

•  Files in the UEFI Flash File System are in the PE format (or
TE [Terse Executable], which is a minimalist PE file)
–  But still PE

•  For this reason we can identify whether diffs are located in
the .data or .text (code) sections of a given file
–  In this case the change occurs in the code section

20	

Identifying Changes in BIOS (bios_diff.py)

•  Also from the PE file we can get the Virtual Address of the
change in the file

•  From this we can derive both the Flash Linear Address of the
change on the serial flash (provided the size of the BIOS
region) and therefore its location in mapped high-memory

•  The output also identifies the Relative-Virtual Address (RVA),
which is the segment offset from the start of the PE file

21	

Identifying Changes in BIOS (bios_diff.py)

•  We can use the VA and RVA information to locate this PE file
in the BIOS hex dump

•  VA – RVA = beginning of PE file
•  But first let’s convert that VA to a flash linear address:
•  FFFF_FFFFh – FFE6_D090h = 19_2F6Fh
•  <.bin size> - 19_2F6Fh = BF_FFFFh - 19_2F6Fh = A6_D090h
•  A6_D090h – 40C = A6_CC84h

22	

Analyzing UEFI Files with IDA
(Search for “MITRE Copernicus Analyzing

BIOS Differences with IDA Pro”)

23	

•  Following our example of finding a “diff” across multiple BIOS,
let’s find out how to analyze the change using IDA

•  This should strike a sharp contrast to trying to analyze a
legacy BIOS which does not follow public standards
–  Not to say they don’t have internal standards, just that those standards

are not public
•  The free version of IDA will be adequate for these purposes

24	

Analyzing UEFI Files

•  The first step having identified a change between two BIOS
dumps is to first locate the specific files in which the change(s)
were detected

•  In our example, the changes occur in Firmware Volume 3
•  Find the directory where EFIPWN decomposed the UEFI

binary and go to firmwareVolume3
25	

•  Inside the firmwareVolume3 directory is a directory listing of GUIDS
•  Find the GUID in which this diff was detected
•  In this case it is GUID:

–  e9312938-e56b-4614-a252-cf7d2f377e26
•  Inside this directory you will find the PE32_94 file which contains the

file that has changed
•  You can locate both of these files in this manner: the previous one

which is assumed to be good, and the new one in which the change
has been observed

26	

Analyzing UEFI Files

•  One of the first things you can do upon acquiring both files is
to observe them in a hex editor

•  HxD allows you to easily perform binary comparisons between
2 files (Analysis > File-Compare > Compare, and then select
the 2 files you want to compare)

27	

Quick look in hex editor

•  HxD’s file comparison compares each file in parallel and highlights
each byte that differs

•  It’s a quick way to “eyeball” changes which have been detected
•  This is less helpful when the file-sizes differ and the area where you

want to analyze the change occurs at an offset other than where it
usually does

28	

Quick look in hex editor

•  In this simple example, the “haxed” version of the PE file has
opcode 0xC3 at offset 0x40C while the original file has 0x8B

•  Those who are familiar with the x86 instruction set may recognize
the 0xC3 opcode as the RET (return) instruction

•  Note that at the bottom of the HxD window it shows the file offset of
the highlighted diff byte (“Block 40C-40C”)

•  This corresponds to the information outputted by our bios_diff.py
29	

Quick look in hex editor

•  You can cycle through each byte that is different by pressing
‘F6’ (Next Difference)

•  In this simple example, there is only this single byte that is
different

30	

Quick look in hex editor

Analyzing UEFI Files with IDA

•  Now we’ll actually take a look at these files in IDA
–  Free version is mostly adequate, minus the Hex-Rays pseudo-code view

•  Notice IDA recognizes the PE file format and opens the file accordingly
–  IDA 6.7 will recognize UEFI files! (but can’t distinguish between PEI and DXE drivers, and so just

applies a DXE entry point definition in both cases)
•  Shown here is the non-hacked version of the TPM driver showing real instructions at the

entry point
31	

Analyzing UEFI Files with IDA

•  Shown above is the hacked file with just the RET at the entry
point

•  This simple example assumes the attacker has placed this
instruction here so that the TPM driver never performs any of
its activities

32	

Analyzing UEFI Files with IDA

•  To see the pseudo-code you will need the full version of IDA
Pro with Hex-Rays

•  The non-hacked file is dereferencing a DWORD at offset 24 of
arg 2
–  IDA displays offsets in base 10 by default; 24 is 0x18

•  The dereference is followed by a call: (a2, &unk_FFE6D744)
•  So this appears to be calling a function pointer from out of a

table

33	

Applying UEFI Structure Definitions

•  UEFI uses publically-defined data structures
•  We’re going to import ‘behemoth.h’ which was created by Snare

(using scripts)
–  https://github.com/snarez/ida-efiutils/blob/master/behemoth.h
–  Snare has done a talk on attacking Apple’s EFI implementation
–  Black Hat USA 2012:

http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf
–  White Paper: http://ho.ax/De_Mysteriis_Dom_Jobsivs_Black_Hat_Paper.pdf

34	

•  Our behemoth.h file is located in the C:\Tools\ directory
•  It contains a lot of structure definitions from the EFI

Specification
–  Plus enumerated values and types

35	

Applying UEFI Structure Definitions

•  Ignore any errors you see when importing this file
–  Importing the structures we use will still work

36	

Applying UEFI Structure Definitions

•  Now go to the Structures tab
•  Hit ‘Insert’

37	

Applying UEFI Structure Definitions

•  Select ‘Add a Standard Structure’

38	

Applying UEFI Structure Definitions

•  We can sort the
structures by name to
make search easier

•  We’re looking for
EFI_PEI_SERVICES

•  These are services
used by PEIMs during
the PEI phase

•  An (incomplete)
sampling is below:

39	

•  Now we’re going to add an EFI_GUID structure

40	

Applying UEFI Structure Definitions

•  A GUID is a 16-byte
data structure used as
a name for many of the
EFI objects:
–  Dword
–  Word
–  Word
–  Char array[8]

41	

•  Likely this file will be using the PEI Services table:
•  The name of the file is ‘AmiTcgPlatformPeiBeforeMem’
•  It’s a common structure used during the PEI phase so PEIMs

can use common services

42	

Applying UEFI Structure Definitions

•  Hit ‘t’ to have IDA interpret that value as a structure
•  Select EFI_PEI_SERVICES based on our hypothesis

43	

Applying UEFI Structure Definitions

•  Hit Ok or ‘y’ to accept this definition
•  IDA does not have an undo, so it’s always good to save first

–  But we have a hunch that this is the right object

44	

Applying UEFI Structure Definitions

•  In the pseudo-code view you can do the same thing
•  Select the a2 argument and hit ‘t’
•  Select the EFI_PEI_SERVICES structure
•  When we enter the above, we see the code simplifies:

45	

Applying UEFI Structure Definitions

•  We see that this function immediately calls the InstallPpi() PEI
Service

•  InstallPpi() takes 2 arguments:
–  The EFI_PEI_SERVICES structure
–  Some Unknown argument

•  Per the EFI Specification, InstallPpi installs an interface in the
PEI PEIM-to-PEIM Interface (PPI) database by GUID

•  We could look up the prototype in the spec:

46	

Applying UEFI Structure Definitions

Always	
 let	
 the	
 GUIDs	
 be	
 your	
 GUIDe	

•  UEFI	
 uses	
 a	
 lot	
 of	
 “GUIDs”	
 –	
 Globally	
 Unique	

IDenEfiers.	

•  Used	
 to	
 idenEfy	
 files	
 on	
 the	
 filesystem	

– Filesystem	
 GUIDs	
 o`en	
 reused	
 between	
 EDK	
 &	

producEon	
 systems.	
 Or	
 between	
 the	
 same	
 IBV	

code	
 on	
 different	
 OEMs’	
 systems	

•  Used	
 to	
 idenEfy	
 structures	
 (PPIs	
 in	
 PEI	
 phase,	

Protocols	
 in	
 DXE	
 phase)	
 that	
 contain	
 data	
 and/
or	
 funcEon	
 pointers	

47	

48	

DXE_CORE_FILE_NAME_GUID	

EFI_CE
RT_TYP

E_PKCS
7_GUID

	

EFI_DE
BUG_A

GENT_
GUID	

EFI_DHCP4_PROTO
COL_GUID	

•  But in this case IDA also recognizes this structure
•  We can double-click on it to see that IDA has identified it as

an EFI_PEI_PPI_DESCRIPTOR :
–  First is the Flags 80000010h
–  Second is the pointer to the GUID
–  Third is the pointer to the PPI that will be installed

49	

Tracing PPIs

•  Select the GUID structure
•  One thing we can do is try and determine if this is a known-

GUID or an unknown GUID
–  The UDK defines a lot of GUIDS, these would likely be the same across

all vendors
–  Vendors also implement their own proprietary GUIDS

50	

Tracing PPIs

•  Snare also provides the efiguids.py file which contains GUIDs he
pulled out of the UDK

•  Our efiguids.py is located in C:\Tools\ and contains previously
identified GUIDs

•  In this case it is not in this file. We can name it ‘UnknownGuid1’
51	

Tracing PPIs

•  Now if we follow the pointer it will take us to the PPI that is
going to be installed

•  This function is what will get called when someone uses this
PPI

52	

Tracing PPIs

•  We can analyze this is pseudo-code or the main view
•  Since it accepts one argument we can hypothesize again that

it takes in an instance of the EFI_PEI_SERVICES structure
53	

Recurse & define

•  As before, we can define this as EFI_PEI_SERVICES**a1

54	

Recurse & define

•  Also we can define v1 in the same way since its equal to a1
•  EFI_PEI_SERVICES**v1

55	

Recurse & define

•  Now we can scroll down and see that we were right in
assuming this was an instance of a EFI_PEI_SERVICES

•  We see a call to LocatePpi(), and then GetBootMode(),
followed by InstallPpi()

•  This series of EFI services “makes sense”
56	

Recurse & define

•  We can look up the definitions for the new services
LocatePpi(), GetBootMode()

•  Can we identify the GUID located in the
EFI_PEI_PPI_DESCRIPTOR passed into InstallPpi?

57	

Recurse & define

Analyzing UEFI Files with IDA
•  So from here the strategy would be to use the same

methodology to identify and “fill out” LocatePpi(),
GetBootMode(), etc.

•  For you, cross-correlating where the PPIs are defined that you
see getting called later will take a bit of grunt work (grepping
for guids, finding their usage, etc)…

•  For us, it’s already scripted ;)

58	

Further	
 GUID-­‐based	
 analysis	
 strategies	

•  If	
 you	
 binary	
 grep	
 for	
 a	
 GUID	
 (or	
 search	
 by	
 GUID	

in	
 UEFITool),	
 you	
 may	
 find	
 that	
 it	
 is	
 specifically	

referenced/loaded	
 by	
 some	
 other	
 file.	

•  Pick	
 a	
 GUID	
 in	
 the	
 spec	
 that	
 you’re	
 interested	
 in.	

E.g.	
 EFI_DHCP4_PROTOCOL_GUID	

•  If	
 you	
 grep	
 for	
 it,	
 you’ll	
 find	
 everywhere	
 that	

parEcular	
 protocol/PPI	
 is	
 used	
 (to	
 include	

installaEon,	
 lookup,	
 and	
 things	
 that	
 have	

registered	
 to	
 be	
 noEfied	
 when	
 it’s	
 available)	

–  Then	
 you	
 just	
 have	
 to	
 si`	
 through	
 the	
 results	

59	

TODO:	

•  Add	
 discussion	
 of	
 diffing	
 things	
 against	
 EDK	
 &	

against	
 other	
 known	
 stuff	

•  Here	
 comes	
 a	
 new	
 challenger!	

•  hBp://joxeankoret.com/blog/2015/03/13/
diaphora-­‐a-­‐program-­‐diffing-­‐plugin-­‐for-­‐ida-­‐
pro/	
 	

60	

UEFI/Secure	
 Boot	
 Summary	

•  Secure	
 boot	
 can	
 help	
 you	
 protect	
 your	
 firmware	

–  If	
 your	
 BIOS	
 is	
 UEFI	
 but	
 Secure	
 Boot	
 isn’t	
 used,	
 you	
 can	
 self-­‐sign	
 keys	

and	
 turn	
 it	
 on	

•  But	
 if	
 the	
 SPI	
 flash	
 isn’t	
 locked	
 down,	
 secure	
 boot	
 doesn’t	

provide	
 any	
 protecEon	
 	

–  And	
 neither	
 does	
 System	
 Management	
 Mode,	
 or	
 signed	
 firmware	

updates,	
 or	
 TPM	
 Measured	
 Boot…	

•  UEFI	
 does	
 add	
 complexity	
 to	
 locking	
 down	
 the	
 SPI	
 flash	
 SPI	

Protected	
 Range	
 (PR)	
 registers	
 can	
 be	
 used	
 to	
 lock	
 down	
 the	

UEFI	
 executable	
 firmware	

•  But	
 the	
 NVRAM	
 variables	
 must	
 remain	
 writeable	

61	

A	
 Locked	
 Down	
 UEFI/BIOS	
 Does	
 the	
 Following:	

•  Has	
 a	
 properly-­‐configured	
 flash	
 descriptor	

–  Read-­‐only,	
 provides	
 proper	
 Flash	
 Master	
 permissions	

•  Protects	
 the	
 UEFI	
 executable	
 code	
 using	
 the	
 PR	
 registers	
 	

•  Locks	
 down	
 the	
 SPI	
 flash	
 configuraEon	
 registers	
 (FLOCKDN)	

•  Uses	
 BIOS_CNTL	
 to	
 protect	
 the	
 flash	
 	

•  Implements	
 signed	
 firmware	
 updates	

•  Implements	
 Secure	
 Boot	

•  Ensures	
 SMM_BWP	
 is	
 asserted	
 so	
 that	
 the	
 flash	
 is	
 writeable	

only	
 when	
 the	
 processor	
 is	
 in	
 SMM	

•  Ensures	
 SMRAM	
 is	
 locked	
 down	
 (D_LCK	
 is	
 set	
 and	
 SMRR	
 are	

used)	

•  Ensures	
 SMI’s	
 are	
 enabled	
 and	
 cannot	
 be	
 suppressed	

•  If	
 possible	
 uses	
 Measured	
 Boot	
 and	
 observes	
 PCRs	

•  Sounds	
 simple	
 enough…	

62	

•  Oh	
 but	
 vendors	
 also	
 need	
 to	
 ensure	
 that	
 none	
 of	
 the	
 code	

they	
 implement	
 in	
 SMRAM	
 is	
 buggy	
 	

•  On	
 the	
 Dell	
 LaEtude	
 E6430,	
 ~144	
 out	
 of	
 495	
 EFI	
 modules	

appear	
 to	
 contribute	
 code	
 to	
 SMM	
 …	
 	

63	

Backup	

•  Used	
 EFIPWN	
 to	
 backup	
 because	
 we	
 don’t	

recommend	
 its	
 use	
 as	
 a	
 primary	
 tool	
 anymore	

(but	
 it	
 is	
 sEll	
 used	
 behind	
 the	
 scenes	
 for	

Copernicus’	
 bios_diff.py)	

64	

EFIPWN	

hBps://github.com/G33KatWork/EFIPWN	

	

65	

Setting up EFIPWN
•  This describes using a version of EFIPWN modified by Sam

Cornwell who added some improvements:

•  EFIPWN requires the following:
•  Python (I use 2.7.x-something)
•  Mako: http://www.makotemplates.org/
•  ArgParse: https://pypi.python.org/pypi/argparse
•  Pylzma: http://www.joachim-bauch.de/projects/pylzma/
•  I have an easier time downloading the source and installing

using “python setup.py install”
•  You will also need the ‘xz’ utility

–  Mac and Linux: you get it either automatically or by easy download
–  Windows: http://tukaani.org/xz/
–  The pre-built binaries work fine. I tested it by putting the bin_x86-x64

version into the local EFIPWN directory and it worked fine
66	

Testing EFIPWN Functionality

•  Once you have all the dependencies installed, typing the following
‘python dump.py –h’ should yield the above output

•  The arguments are a little confusing for EFIPWN, as a general rule
they go like this:

•  Python dump.y <file> <print, dump> <output>
•  * The genfdf function does not work yet

67	

EFIPWN ‘print’

•  Before we decompose a UEFI binary, we’ll use the ‘print’
functionality to print a text file containing the UEFI firmware
volume information and the PE files/modules contained
therein

Specify	
 ‘print’	
 to	
 gather	
 informaEon	
 	

about	
 the	
 structure	
 of	
 the	
 UEFI	

binary	

Redirect	
 this	
 output	

to	
 a	
 text	
 file	

68	

EFIPWN ‘print’: Firmware Volume

•  The base offset is the Flash
Linear Address (FLA) in the
file where the volume
begins

•  This page shows one FV
beginning at 60_0000h and
another immediately
following it at 62_0000h

69	

EFIPWN ‘print’: Firmware Volume

•  The Header length refers to the length in bytes of the FV header
•  The Data length refers to the length in bytes of the FV minus the

header
•  The Total length refers to the total length of the FV including the

header
70	

EFIPWN ‘print’: Firmware Volume

•  The Signature of a firmware volume is {‘_’, ‘F’, ‘V’, ‘H’}
•  The signature field only applies to Firmware Volumes

71	

EFIPWN ‘print’: Firmware Volume

•  The attributes field declares capabilities and power-on defaults
for the firmware volume

72	

EFIPWN ‘print’: Firmware Volume

•  Defined in Vol. 3 Shared
Architectural Elements

//	
 A;ributes	
 bit	
 definiFons	

#define	
 EFI_FVB2_READ_DISABLED_CAP	
 0x00000001	

#define	
 EFI_FVB2_READ_ENABLED_CAP	
 0x00000002	

#define	
 EFI_FVB2_READ_STATUS	
 0x00000004	

#define	
 EFI_FVB2_WRITE_DISABLED_CAP	
 0x00000008	

#define	
 EFI_FVB2_WRITE_ENABLED_CAP	
 0x00000010	

#define	
 EFI_FVB2_WRITE_STATUS	
 0x00000020	

#define	
 EFI_FVB2_LOCK_CAP	
 0x00000040	

#define	
 EFI_FVB2_LOCK_STATUS	
 0x00000080	

#define	
 EFI_FVB2_STICKY_WRITE	
 0x00000200	

#define	
 EFI_FVB2_MEMORY_MAPPED	
 0x00000400	

#define	
 EFI_FVB2_ERASE_POLARITY	
 0x00000800	

#define	
 EFI_FVB2_READ_LOCK_CAP	
 0x00001000	

#define	
 EFI_FVB2_READ_LOCK_STATUS	
 0x00002000	

#define	
 EFI_FVB2_WRITE_LOCK_CAP	
 0x00004000	

#define	
 EFI_FVB2_WRITE_LOCK_STATUS	
 0x00008000	

#define	
 EFI_FVB2_ALIGNMENT	
 0x001F0000	

#define	
 EFI_FVB2_WEAK_ALIGNMENT	
 0x80000000	

#define	
 EFI_FVB2_ALIGNMENT_1	
 0x00000000	

#define	
 EFI_FVB2_ALIGNMENT_2	
 0x00010000	

#define	
 EFI_FVB2_ALIGNMENT_4	
 0x00020000	

#define	
 EFI_FVB2_ALIGNMENT_8	
 0x00030000	

#define	
 EFI_FVB2_ALIGNMENT_16	
 0x00040000	

#define	
 EFI_FVB2_ALIGNMENT_32	
 0x00050000	

#define	
 EFI_FVB2_ALIGNMENT_64	
 0x00060000	

#define	
 EFI_FVB2_ALIGNMENT_128	
 0x00070000	

#define	
 EFI_FVB2_ALIGNMENT_256	
 0x00080000	

#define	
 EFI_FVB2_ALIGNMENT_512	
 0x00090000	

#define	
 EFI_FVB2_ALIGNMENT_1K	
 0x000A0000	

#define	
 EFI_FVB2_ALIGNMENT_2K	
 0x000B0000	

#define	
 EFI_FVB2_ALIGNMENT_4K	
 0x000C0000	

#define	
 EFI_FVB2_ALIGNMENT_8K	
 0x000D0000	

#define	
 EFI_FVB2_ALIGNMENT_16K	
 0x000E0000	

#define	
 EFI_FVB2_ALIGNMENT_32K	
 0x000F0000	

#define	
 EFI_FVB2_ALIGNMENT_64K	
 0x00100000	

#define	
 EFI_FVB2_ALIGNMENT_128K	
 0x00110000	

#define	
 EFI_FVB2_ALIGNMENT_256K	
 0x00120000	

#define	
 EFI_FVB2_ALIGNMENT_512K	
 0x00130000	

#define	
 EFI_FVB2_ALIGNMENT_1M	
 0x00140000	

#define	
 EFI_FVB2_ALIGNMENT_2M	
 0x00150000	

#define	
 EFI_FVB2_ALIGNMENT_4M	
 0x00160000	

#define	
 EFI_FVB2_ALIGNMENT_8M	
 0x00170000	

#define	
 EFI_FVB2_ALIGNMENT_16M	
 0x00180000	

#define	
 EFI_FVB2_ALIGNMENT_32M	
 0x00190000	

#define	
 EFI_FVB2_ALIGNMENT_64M	
 0x001A0000	

#define	
 EFI_FVB2_ALIGNMENT_128M	
 0x001B0000	

#define	
 EFI_FVB2_ALIGNMENT_256M	
 0x001C0000	

#define	
 EFI_FVB2_ALIGNMENT_512M	
 0x001D0000	

#define	
 EFI_FVB2_ALIGNMENT_1G	
 0x001E0000	

#define	
 EFI_FVB2_ALIGNMENT_2G	
 0x001F0000	

73	

EFIPWN ‘print’: Firmware Files

•  Firmware files are code and/or data stored within firmware
volumes

•  Combined, Firmware Files are described/contained within a
Firmware File System

•  Base offset refers to its relative location within the volume
•  Length refers to the length of the file
•  GUID is its ID

74	

.	
 .	
 .	

EFIPWN ‘print’: Firmware File

•  There are different enumerated types of Firmware Files
•  Defined in Vol3 Shared Architectural Elements Section 2.1.4.1

75	

EFIPWN ‘print’: Firmware Files

•  Firmware Files have attributes like Firmware Volumes do (and
are the same)

•  The State of the file is intended to preserve integrity

76	

EFIPWN ‘print’: Firmware Files

•  You can see that it includes the provision for marking files as
deleted, which is kind of interesting. But unlike filesystem
forensics, all these tools should basically show you all files,
whether they’re deleted or not

Bits	
 6,	
 7	
 are	
 reserved	
 bits.	
 	

77	

