
Advanced	 x86:	
BIOS	 and	 System	 Management	 Mode	 Internals	

UEFI	 Reverse	 Engineering	

Xeno	 Kovah	 &&	 Corey	 Kallenberg	
LegbaCore,	 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	 condiEon:	 You	 must	 indicate	 that	 derivaEve	 work	
"Is	 derived	 from	 John	 BuBerworth	 &	 Xeno	 Kovah’s	 ’Advanced	 Intel	 x86:	 BIOS	 and	 SMM’	 class	 posted	 at	 hBp://opensecuritytraining.info/IntroBIOS.html”	

And	 the	 people	 yelled:	

3	

WE	 WANT	 TO	 ANALYZE	
SOME	 CODE!	

WE	 WANT	 TO	 ANALYZE	
SOME	 CODE!	

WE	 WANT	 TO	 ANALYZE	
SOME	 CODE!	

WE	 WANT	 TO	 ANALYZE	
SOME	 CODE!	

WE	 WANT	 TO	 ANALYZE	
SOME	 CODE!	

WE	 WANT	 TO	 ANALYZE	
SOME	 CODE!!!1!	

•  Find	 some	 subset	 of	 interesEng	 code	
–  You	 *could*	 search	 for	 B/D/F	 address	 of	 interest	

•  But	 beBer	 is	 to	 narrow	 down	 what	 you	 want	 to	 look	 at,	 by	
slicing	 and	 dicing	 the	 firmware	 filesystem	 with	 one	 of:	

•  EFIPWN	
–  hBps://github.com/G33KatWork/EFIPWN	

•  UEFITool	
–  hBps://github.com/LongSo`/UEFITool	 	

•  UEFI	 Firmware	 Parser	
–  hBps://github.com/theopolis/uefi-‐firmware-‐parser	 	
–  We're	 not	 going	 to	 cover	 this	 for	 now,	 since	 I	 haven't	 built	 it	 on	
Windows	 yet	

4	

Simmer	 down	 y'all.	
I	 reckon	 what	 ya	 best	 do	 is…	

Firmware Storage

•  UEFI utilizes the physical flash device as a storage repository
•  Comprised of 4 basic components:

–  Firmware Device
–  Firmware Volume
–  Firmware File System
–  Firmware Files

SPI	 Flash	

UEFI/BIOS	

Flash	 Descriptor	

Gigabit	 Ethernet	

Plaeorm	 Data	

Management	 Engine	

Firmware	 Device	 refers	 to	 the	 flash	 chip	

5	

Firmware Volumes (FVs)

•  A Firmware Device is a physical component such as a flash chip.
•  We mostly care about Firmware Volumes (FVs)
•  We often see separate volumes for PEI vs. DXE code

–  And occasional “duplicate” volumes for restore-from-backup
•  FVs can contain multiple firmware volumes (nesting)
•  FVs are organized into a Firmware File System (FFS)
•  The base unit of a FFS is a file

SPI	 Flash	

UEFI/BIOS	

Flash	 Descriptor	

Gigabit	 Ethernet	

Plaeorm	 Data	

Management	 Engine	

Firmware	 Volume(s)	

FV does not
have to align
with the start
of the BIOS
region as

configured in
the Flash
Descriptor

FV0	

FV1	

6	

Firmware File System (FFS)

•  FVs are organized into a Firmware File System (FFS)
•  A FFS describes the organization of files within the FV
•  The base unit of a FFS is a file
•  Files can be further subdivided into sections

FV1	

FV0	

FFS	

7	

Firmware Files

•  We mostly care about file sections that are in PE (Portable
Executable) file format
–  Alternatively can be a TE (Terse Executable) which is a “minimalist” PE
Oh,	 how	 interesEng!	 My	 BIOS	 uses	 "Windows"	 executables?	 I	 know	 how	 to	 analyze	 those!	 Oh,	 how	 interesEng!	 My	 BIOS	 uses	 "Windows"	 executables?	 I	 know	 how	 to	 analyze	 those!	

A	 standard	 way	 of	 puong	 together	
the	 firmware	 filesystem,	 with	 nice	
human	 readable	 names,	 makes	 it	

easier	 for	 me	 to	 find	 my	 way	 around	
to	 the	 likely	 locaEons	 I	 want	 to	 aBack	

A	 standard	 way	 of	 puong	 together	
the	 firmware	 filesystem,	 with	 nice	
human	 readable	 names,	 makes	 it	
easier	 for	 me	 to	 understand	 the	
context	 of	 what	 might	 have	 been	
aBacked	 if	 I	 see	 a	 difference	 there	

Yay	 StandardizaEon!	

UEFITool/UEFIExtract	

•  The	 best	 and	 most	 up-‐to-‐date	 firmware	
filesystem	 parser	

10	

11	

Go	 to	 File-‐>Open	 and	 select	 the	 file	 dump	 (I	 selected	 the	 "e6430A03.bin")	

NavigaEon	 by	 expanding	
porEons	 here	

Parsed	 metadata	 here	

Here	 it's	 interpreEng	 the	
Flash	 Descriptor	 and	
telling	 us	 which	 regions	
the	 BIOS	 can	 access	

This	 volume	 holds	 a	 bunch	 of	 PEIMs	 (and	 the	 one	 above	 it	 a	 bunch	 of	 DXE	 drivers.)	

"AmgTcgPlaeormPeiBeforeMem"	 is	 the	 PEIM	 we're	 going	 to	 be	 interested	 in	 shortly	
	
To	 get	 a	 well-‐formed	 PE	 file,	 we	 extract	 it	 by	 right	 clicking	 and	 selecEng	 "Extract	 body"	

14	

UEFIExtract	 is	 a	 simple	 command	 line	 tool	 that	 just	 dumps	 everything	
out	 to	 the	 filesystem	 instead	 of	 making	 it	 navigable	 from	 a	 GUI	

The	 metadata	 will	 be	 stored	 off	 to	 the	 side	
in	 .txt	 files	

15	

This	 is	 good	 if	 you	 want	 to	 search	 all	 the	 files	 for	 a	 paBern.	 But	 it's	 less	
easy	 to	 navigate	 if	 you	 want	 to	 just	 get	 a	 single	 file	 (in	 that	 case	 just	 use	
the	 GUI)	

Identifying Changes in BIOS (bios_diff.py)

•  So as we know, Copernicus provides us the full dump of the
BIOS flash
–  Repeated from previous: Copernicus maintains the FLA offsets for each

region by reading even those which the CPU/BIOS master has no
permissions to read (like the Management Engine, typically)

–  Any BIOS dump should work as long as it’s a UEFI BIOS (structured for
better parsing)

•  Comparing BIOS dumps over a period of time can provide
change detection

•  How this differs from observing the TPM PCR registers is this:
•  When a PCR tells you a change has been made, it cannot tell

you where the change has been made
•  Bios_diff.py uses the decomposition capability of EFIPWN to

tell us the particular module(s) in which the change(s) is/are
located

16	

Identifying Changes in BIOS (bios_diff.py)

•  This script uses EFIPWN to parse and diff the modules
between two BIOS dumps

•  EFIPWN decomposes the BIOS into its firmware volumes
(FVs) and then decomposes each into the files/modules that
comprise it

•  In this example we’re analyzing an earlier “known-good” BIOS
with one which we notice has changed
–  We took a known good and purposefully made a small change in the

“suspicious” one

17	

Identifying Changes in BIOS (bios_diff.py)

•  The script has found a difference located in firmware volume 3
•  Some files/modules have user-friendly names and if this is the

case the script outputs this name
•  AmiTcgPlatformPeiBeforeMem
•  Tcg could be Trusted Computing Group and this is likely a

PEIM that executes before memory is established

18	

Identifying Changes in BIOS (bios_diff.py)

•  If more than 1 diff is found they will all be listed here in this
manner

•  In this case it is just a single diff found
•  Diff was found at offset 0x40C in the file

“AmiTcgPlatformPeiBeforeMem”
•  The length of the diff is 7 bytes

19	

Identifying Changes in BIOS (bios_diff.py)

•  Files in the UEFI Flash File System are in the PE format (or
TE [Terse Executable], which is a minimalist PE file)
–  But still PE

•  For this reason we can identify whether diffs are located in
the .data or .text (code) sections of a given file
–  In this case the change occurs in the code section

20	

Identifying Changes in BIOS (bios_diff.py)

•  Also from the PE file we can get the Virtual Address of the
change in the file

•  From this we can derive both the Flash Linear Address of the
change on the serial flash (provided the size of the BIOS
region) and therefore its location in mapped high-memory

•  The output also identifies the Relative-Virtual Address (RVA),
which is the segment offset from the start of the PE file

21	

Identifying Changes in BIOS (bios_diff.py)

•  We can use the VA and RVA information to locate this PE file
in the BIOS hex dump

•  VA – RVA = beginning of PE file
•  But first let’s convert that VA to a flash linear address:
•  FFFF_FFFFh – FFE6_D090h = 19_2F6Fh
•  <.bin size> - 19_2F6Fh = BF_FFFFh - 19_2F6Fh = A6_D090h
•  A6_D090h – 40C = A6_CC84h

22	

Analyzing UEFI Files with IDA
(Search for “MITRE Copernicus Analyzing

BIOS Differences with IDA Pro”)

23	

•  Following our example of finding a “diff” across multiple BIOS,
let’s find out how to analyze the change using IDA

•  This should strike a sharp contrast to trying to analyze a
legacy BIOS which does not follow public standards
–  Not to say they don’t have internal standards, just that those standards

are not public
•  The free version of IDA will be adequate for these purposes

24	

Analyzing UEFI Files

•  The first step having identified a change between two BIOS
dumps is to first locate the specific files in which the change(s)
were detected

•  In our example, the changes occur in Firmware Volume 3
•  Find the directory where EFIPWN decomposed the UEFI

binary and go to firmwareVolume3
25	

•  Inside the firmwareVolume3 directory is a directory listing of GUIDS
•  Find the GUID in which this diff was detected
•  In this case it is GUID:

–  e9312938-e56b-4614-a252-cf7d2f377e26
•  Inside this directory you will find the PE32_94 file which contains the

file that has changed
•  You can locate both of these files in this manner: the previous one

which is assumed to be good, and the new one in which the change
has been observed

26	

Analyzing UEFI Files

•  One of the first things you can do upon acquiring both files is
to observe them in a hex editor

•  HxD allows you to easily perform binary comparisons between
2 files (Analysis > File-Compare > Compare, and then select
the 2 files you want to compare)

27	

Quick look in hex editor

•  HxD’s file comparison compares each file in parallel and highlights
each byte that differs

•  It’s a quick way to “eyeball” changes which have been detected
•  This is less helpful when the file-sizes differ and the area where you

want to analyze the change occurs at an offset other than where it
usually does

28	

Quick look in hex editor

•  In this simple example, the “haxed” version of the PE file has
opcode 0xC3 at offset 0x40C while the original file has 0x8B

•  Those who are familiar with the x86 instruction set may recognize
the 0xC3 opcode as the RET (return) instruction

•  Note that at the bottom of the HxD window it shows the file offset of
the highlighted diff byte (“Block 40C-40C”)

•  This corresponds to the information outputted by our bios_diff.py
29	

Quick look in hex editor

•  You can cycle through each byte that is different by pressing
‘F6’ (Next Difference)

•  In this simple example, there is only this single byte that is
different

30	

Quick look in hex editor

Analyzing UEFI Files with IDA

•  Now we’ll actually take a look at these files in IDA
–  Free version is mostly adequate, minus the Hex-Rays pseudo-code view

•  Notice IDA recognizes the PE file format and opens the file accordingly
–  IDA 6.7 will recognize UEFI files! (but can’t distinguish between PEI and DXE drivers, and so just

applies a DXE entry point definition in both cases)
•  Shown here is the non-hacked version of the TPM driver showing real instructions at the

entry point
31	

Analyzing UEFI Files with IDA

•  Shown above is the hacked file with just the RET at the entry
point

•  This simple example assumes the attacker has placed this
instruction here so that the TPM driver never performs any of
its activities

32	

Analyzing UEFI Files with IDA

•  To see the pseudo-code you will need the full version of IDA
Pro with Hex-Rays

•  The non-hacked file is dereferencing a DWORD at offset 24 of
arg 2
–  IDA displays offsets in base 10 by default; 24 is 0x18

•  The dereference is followed by a call: (a2, &unk_FFE6D744)
•  So this appears to be calling a function pointer from out of a

table

33	

Applying UEFI Structure Definitions

•  UEFI uses publically-defined data structures
•  We’re going to import ‘behemoth.h’ which was created by Snare

(using scripts)
–  https://github.com/snarez/ida-efiutils/blob/master/behemoth.h
–  Snare has done a talk on attacking Apple’s EFI implementation
–  Black Hat USA 2012:

http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf
–  White Paper: http://ho.ax/De_Mysteriis_Dom_Jobsivs_Black_Hat_Paper.pdf

34	

•  Our behemoth.h file is located in the C:\Tools\ directory
•  It contains a lot of structure definitions from the EFI

Specification
–  Plus enumerated values and types

35	

Applying UEFI Structure Definitions

•  Ignore any errors you see when importing this file
–  Importing the structures we use will still work

36	

Applying UEFI Structure Definitions

•  Now go to the Structures tab
•  Hit ‘Insert’

37	

Applying UEFI Structure Definitions

•  Select ‘Add a Standard Structure’

38	

Applying UEFI Structure Definitions

•  We can sort the
structures by name to
make search easier

•  We’re looking for
EFI_PEI_SERVICES

•  These are services
used by PEIMs during
the PEI phase

•  An (incomplete)
sampling is below:

39	

•  Now we’re going to add an EFI_GUID structure

40	

Applying UEFI Structure Definitions

•  A GUID is a 16-byte
data structure used as
a name for many of the
EFI objects:
–  Dword
–  Word
–  Word
–  Char array[8]

41	

•  Likely this file will be using the PEI Services table:
•  The name of the file is ‘AmiTcgPlatformPeiBeforeMem’
•  It’s a common structure used during the PEI phase so PEIMs

can use common services

42	

Applying UEFI Structure Definitions

•  Hit ‘t’ to have IDA interpret that value as a structure
•  Select EFI_PEI_SERVICES based on our hypothesis

43	

Applying UEFI Structure Definitions

•  Hit Ok or ‘y’ to accept this definition
•  IDA does not have an undo, so it’s always good to save first

–  But we have a hunch that this is the right object

44	

Applying UEFI Structure Definitions

•  In the pseudo-code view you can do the same thing
•  Select the a2 argument and hit ‘t’
•  Select the EFI_PEI_SERVICES structure
•  When we enter the above, we see the code simplifies:

45	

Applying UEFI Structure Definitions

•  We see that this function immediately calls the InstallPpi() PEI
Service

•  InstallPpi() takes 2 arguments:
–  The EFI_PEI_SERVICES structure
–  Some Unknown argument

•  Per the EFI Specification, InstallPpi installs an interface in the
PEI PEIM-to-PEIM Interface (PPI) database by GUID

•  We could look up the prototype in the spec:

46	

Applying UEFI Structure Definitions

Always	 let	 the	 GUIDs	 be	 your	 GUIDe	

•  UEFI	 uses	 a	 lot	 of	 “GUIDs”	 –	 Globally	 Unique	
IDenEfiers.	

•  Used	 to	 idenEfy	 files	 on	 the	 filesystem	
– Filesystem	 GUIDs	 o`en	 reused	 between	 EDK	 &	
producEon	 systems.	 Or	 between	 the	 same	 IBV	
code	 on	 different	 OEMs’	 systems	

•  Used	 to	 idenEfy	 structures	 (PPIs	 in	 PEI	 phase,	
Protocols	 in	 DXE	 phase)	 that	 contain	 data	 and/
or	 funcEon	 pointers	

47	

48	

DXE_CORE_FILE_NAME_GUID	

EFI_CE
RT_TYP

E_PKCS
7_GUID

	

EFI_DE
BUG_A

GENT_
GUID	

EFI_DHCP4_PROTO
COL_GUID	

•  But in this case IDA also recognizes this structure
•  We can double-click on it to see that IDA has identified it as

an EFI_PEI_PPI_DESCRIPTOR :
–  First is the Flags 80000010h
–  Second is the pointer to the GUID
–  Third is the pointer to the PPI that will be installed

49	

Tracing PPIs

•  Select the GUID structure
•  One thing we can do is try and determine if this is a known-

GUID or an unknown GUID
–  The UDK defines a lot of GUIDS, these would likely be the same across

all vendors
–  Vendors also implement their own proprietary GUIDS

50	

Tracing PPIs

•  Snare also provides the efiguids.py file which contains GUIDs he
pulled out of the UDK

•  Our efiguids.py is located in C:\Tools\ and contains previously
identified GUIDs

•  In this case it is not in this file. We can name it ‘UnknownGuid1’
51	

Tracing PPIs

•  Now if we follow the pointer it will take us to the PPI that is
going to be installed

•  This function is what will get called when someone uses this
PPI

52	

Tracing PPIs

•  We can analyze this is pseudo-code or the main view
•  Since it accepts one argument we can hypothesize again that

it takes in an instance of the EFI_PEI_SERVICES structure
53	

Recurse & define

•  As before, we can define this as EFI_PEI_SERVICES**a1

54	

Recurse & define

•  Also we can define v1 in the same way since its equal to a1
•  EFI_PEI_SERVICES**v1

55	

Recurse & define

•  Now we can scroll down and see that we were right in
assuming this was an instance of a EFI_PEI_SERVICES

•  We see a call to LocatePpi(), and then GetBootMode(),
followed by InstallPpi()

•  This series of EFI services “makes sense”
56	

Recurse & define

•  We can look up the definitions for the new services
LocatePpi(), GetBootMode()

•  Can we identify the GUID located in the
EFI_PEI_PPI_DESCRIPTOR passed into InstallPpi?

57	

Recurse & define

Analyzing UEFI Files with IDA
•  So from here the strategy would be to use the same

methodology to identify and “fill out” LocatePpi(),
GetBootMode(), etc.

•  For you, cross-correlating where the PPIs are defined that you
see getting called later will take a bit of grunt work (grepping
for guids, finding their usage, etc)…

•  For us, it’s already scripted ;)

58	

Further	 GUID-‐based	 analysis	 strategies	

•  If	 you	 binary	 grep	 for	 a	 GUID	 (or	 search	 by	 GUID	
in	 UEFITool),	 you	 may	 find	 that	 it	 is	 specifically	
referenced/loaded	 by	 some	 other	 file.	

•  Pick	 a	 GUID	 in	 the	 spec	 that	 you’re	 interested	 in.	
E.g.	 EFI_DHCP4_PROTOCOL_GUID	

•  If	 you	 grep	 for	 it,	 you’ll	 find	 everywhere	 that	
parEcular	 protocol/PPI	 is	 used	 (to	 include	
installaEon,	 lookup,	 and	 things	 that	 have	
registered	 to	 be	 noEfied	 when	 it’s	 available)	
–  Then	 you	 just	 have	 to	 si`	 through	 the	 results	

59	

TODO:	

•  Add	 discussion	 of	 diffing	 things	 against	 EDK	 &	
against	 other	 known	 stuff	

•  Here	 comes	 a	 new	 challenger!	
•  hBp://joxeankoret.com/blog/2015/03/13/
diaphora-‐a-‐program-‐diffing-‐plugin-‐for-‐ida-‐
pro/	 	

60	

UEFI/Secure	 Boot	 Summary	

•  Secure	 boot	 can	 help	 you	 protect	 your	 firmware	
–  If	 your	 BIOS	 is	 UEFI	 but	 Secure	 Boot	 isn’t	 used,	 you	 can	 self-‐sign	 keys	

and	 turn	 it	 on	

•  But	 if	 the	 SPI	 flash	 isn’t	 locked	 down,	 secure	 boot	 doesn’t	
provide	 any	 protecEon	 	
–  And	 neither	 does	 System	 Management	 Mode,	 or	 signed	 firmware	

updates,	 or	 TPM	 Measured	 Boot…	

•  UEFI	 does	 add	 complexity	 to	 locking	 down	 the	 SPI	 flash	 SPI	
Protected	 Range	 (PR)	 registers	 can	 be	 used	 to	 lock	 down	 the	
UEFI	 executable	 firmware	

•  But	 the	 NVRAM	 variables	 must	 remain	 writeable	

61	

A	 Locked	 Down	 UEFI/BIOS	 Does	 the	 Following:	
•  Has	 a	 properly-‐configured	 flash	 descriptor	

–  Read-‐only,	 provides	 proper	 Flash	 Master	 permissions	
•  Protects	 the	 UEFI	 executable	 code	 using	 the	 PR	 registers	 	
•  Locks	 down	 the	 SPI	 flash	 configuraEon	 registers	 (FLOCKDN)	
•  Uses	 BIOS_CNTL	 to	 protect	 the	 flash	 	
•  Implements	 signed	 firmware	 updates	
•  Implements	 Secure	 Boot	
•  Ensures	 SMM_BWP	 is	 asserted	 so	 that	 the	 flash	 is	 writeable	

only	 when	 the	 processor	 is	 in	 SMM	
•  Ensures	 SMRAM	 is	 locked	 down	 (D_LCK	 is	 set	 and	 SMRR	 are	

used)	
•  Ensures	 SMI’s	 are	 enabled	 and	 cannot	 be	 suppressed	
•  If	 possible	 uses	 Measured	 Boot	 and	 observes	 PCRs	
•  Sounds	 simple	 enough…	

62	

•  Oh	 but	 vendors	 also	 need	 to	 ensure	 that	 none	 of	 the	 code	
they	 implement	 in	 SMRAM	 is	 buggy	 	

•  On	 the	 Dell	 LaEtude	 E6430,	 ~144	 out	 of	 495	 EFI	 modules	
appear	 to	 contribute	 code	 to	 SMM	 …	 	

63	

Backup	

•  Used	 EFIPWN	 to	 backup	 because	 we	 don’t	
recommend	 its	 use	 as	 a	 primary	 tool	 anymore	
(but	 it	 is	 sEll	 used	 behind	 the	 scenes	 for	
Copernicus’	 bios_diff.py)	

64	

EFIPWN	

hBps://github.com/G33KatWork/EFIPWN	
	

65	

Setting up EFIPWN
•  This describes using a version of EFIPWN modified by Sam

Cornwell who added some improvements:

•  EFIPWN requires the following:
•  Python (I use 2.7.x-something)
•  Mako: http://www.makotemplates.org/
•  ArgParse: https://pypi.python.org/pypi/argparse
•  Pylzma: http://www.joachim-bauch.de/projects/pylzma/
•  I have an easier time downloading the source and installing

using “python setup.py install”
•  You will also need the ‘xz’ utility

–  Mac and Linux: you get it either automatically or by easy download
–  Windows: http://tukaani.org/xz/
–  The pre-built binaries work fine. I tested it by putting the bin_x86-x64

version into the local EFIPWN directory and it worked fine
66	

Testing EFIPWN Functionality

•  Once you have all the dependencies installed, typing the following
‘python dump.py –h’ should yield the above output

•  The arguments are a little confusing for EFIPWN, as a general rule
they go like this:

•  Python dump.y <file> <print, dump> <output>
•  * The genfdf function does not work yet

67	

EFIPWN ‘print’

•  Before we decompose a UEFI binary, we’ll use the ‘print’
functionality to print a text file containing the UEFI firmware
volume information and the PE files/modules contained
therein

Specify	 ‘print’	 to	 gather	 informaEon	 	
about	 the	 structure	 of	 the	 UEFI	
binary	

Redirect	 this	 output	
to	 a	 text	 file	

68	

EFIPWN ‘print’: Firmware Volume

•  The base offset is the Flash
Linear Address (FLA) in the
file where the volume
begins

•  This page shows one FV
beginning at 60_0000h and
another immediately
following it at 62_0000h

69	

EFIPWN ‘print’: Firmware Volume

•  The Header length refers to the length in bytes of the FV header
•  The Data length refers to the length in bytes of the FV minus the

header
•  The Total length refers to the total length of the FV including the

header
70	

EFIPWN ‘print’: Firmware Volume

•  The Signature of a firmware volume is {‘_’, ‘F’, ‘V’, ‘H’}
•  The signature field only applies to Firmware Volumes

71	

EFIPWN ‘print’: Firmware Volume

•  The attributes field declares capabilities and power-on defaults
for the firmware volume

72	

EFIPWN ‘print’: Firmware Volume

•  Defined in Vol. 3 Shared
Architectural Elements

//	 A;ributes	 bit	 definiFons	
#define	 EFI_FVB2_READ_DISABLED_CAP	 0x00000001	
#define	 EFI_FVB2_READ_ENABLED_CAP	 0x00000002	
#define	 EFI_FVB2_READ_STATUS	 0x00000004	
#define	 EFI_FVB2_WRITE_DISABLED_CAP	 0x00000008	
#define	 EFI_FVB2_WRITE_ENABLED_CAP	 0x00000010	
#define	 EFI_FVB2_WRITE_STATUS	 0x00000020	
#define	 EFI_FVB2_LOCK_CAP	 0x00000040	
#define	 EFI_FVB2_LOCK_STATUS	 0x00000080	
#define	 EFI_FVB2_STICKY_WRITE	 0x00000200	
#define	 EFI_FVB2_MEMORY_MAPPED	 0x00000400	
#define	 EFI_FVB2_ERASE_POLARITY	 0x00000800	
#define	 EFI_FVB2_READ_LOCK_CAP	 0x00001000	
#define	 EFI_FVB2_READ_LOCK_STATUS	 0x00002000	
#define	 EFI_FVB2_WRITE_LOCK_CAP	 0x00004000	
#define	 EFI_FVB2_WRITE_LOCK_STATUS	 0x00008000	
#define	 EFI_FVB2_ALIGNMENT	 0x001F0000	
#define	 EFI_FVB2_WEAK_ALIGNMENT	 0x80000000	
#define	 EFI_FVB2_ALIGNMENT_1	 0x00000000	
#define	 EFI_FVB2_ALIGNMENT_2	 0x00010000	
#define	 EFI_FVB2_ALIGNMENT_4	 0x00020000	
#define	 EFI_FVB2_ALIGNMENT_8	 0x00030000	
#define	 EFI_FVB2_ALIGNMENT_16	 0x00040000	
#define	 EFI_FVB2_ALIGNMENT_32	 0x00050000	
#define	 EFI_FVB2_ALIGNMENT_64	 0x00060000	
#define	 EFI_FVB2_ALIGNMENT_128	 0x00070000	
#define	 EFI_FVB2_ALIGNMENT_256	 0x00080000	
#define	 EFI_FVB2_ALIGNMENT_512	 0x00090000	

#define	 EFI_FVB2_ALIGNMENT_1K	 0x000A0000	
#define	 EFI_FVB2_ALIGNMENT_2K	 0x000B0000	
#define	 EFI_FVB2_ALIGNMENT_4K	 0x000C0000	
#define	 EFI_FVB2_ALIGNMENT_8K	 0x000D0000	
#define	 EFI_FVB2_ALIGNMENT_16K	 0x000E0000	
#define	 EFI_FVB2_ALIGNMENT_32K	 0x000F0000	
#define	 EFI_FVB2_ALIGNMENT_64K	 0x00100000	
#define	 EFI_FVB2_ALIGNMENT_128K	 0x00110000	
#define	 EFI_FVB2_ALIGNMENT_256K	 0x00120000	
#define	 EFI_FVB2_ALIGNMENT_512K	 0x00130000	
#define	 EFI_FVB2_ALIGNMENT_1M	 0x00140000	
#define	 EFI_FVB2_ALIGNMENT_2M	 0x00150000	
#define	 EFI_FVB2_ALIGNMENT_4M	 0x00160000	
#define	 EFI_FVB2_ALIGNMENT_8M	 0x00170000	
#define	 EFI_FVB2_ALIGNMENT_16M	 0x00180000	
#define	 EFI_FVB2_ALIGNMENT_32M	 0x00190000	
#define	 EFI_FVB2_ALIGNMENT_64M	 0x001A0000	
#define	 EFI_FVB2_ALIGNMENT_128M	 0x001B0000	
#define	 EFI_FVB2_ALIGNMENT_256M	 0x001C0000	
#define	 EFI_FVB2_ALIGNMENT_512M	 0x001D0000	
#define	 EFI_FVB2_ALIGNMENT_1G	 0x001E0000	
#define	 EFI_FVB2_ALIGNMENT_2G	 0x001F0000	

73	

EFIPWN ‘print’: Firmware Files

•  Firmware files are code and/or data stored within firmware
volumes

•  Combined, Firmware Files are described/contained within a
Firmware File System

•  Base offset refers to its relative location within the volume
•  Length refers to the length of the file
•  GUID is its ID

74	

.	 .	 .	

EFIPWN ‘print’: Firmware File

•  There are different enumerated types of Firmware Files
•  Defined in Vol3 Shared Architectural Elements Section 2.1.4.1

75	

EFIPWN ‘print’: Firmware Files

•  Firmware Files have attributes like Firmware Volumes do (and
are the same)

•  The State of the file is intended to preserve integrity

76	

EFIPWN ‘print’: Firmware Files

•  You can see that it includes the provision for marking files as
deleted, which is kind of interesting. But unlike filesystem
forensics, all these tools should basically show you all files,
whether they’re deleted or not

Bits	 6,	 7	 are	 reserved	 bits.	 	

77	

