
Advanced	 x86:	
BIOS	 and	 System	 Management	 Mode	 Internals	

Trusted	 Compu-ng	 Technologies	

Xeno	 Kovah	 &&	 Corey	 Kallenberg	
LegbaCore,	 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	 condiEon:	 You	 must	 indicate	 that	 derivaEve	 work	
"Is	 derived	 from	 John	 BuBerworth	 &	 Xeno	 Kovah’s	 ’Advanced	 Intel	 x86:	 BIOS	 and	 SMM’	 class	 posted	 at	 hBp://opensecuritytraining.info/IntroBIOS.html”	

NOTE	

•  There’s	 an	 enEre	 2	 day	 class	 all	 about	 TPMs,	
and	 what	 they	 can	 and	 can’t	 do,	 here:	

•  hBp://opensecuritytraining.info/
IntroToTrustedCompuEng.html	 	

•  (Why	 John	 chose	 not	 to	 reuse	 some	 of	 that	
material,	 I	 don’t	 know)	 	

3	

MoEvaEon	
•  “Secure	 Boot”	 does	 some	 sort	 of	 check	 on	 the	 integrity	
of	 components	 (such	 as	 a	 digital	 signature	 check)	 while	
booEng	 up.	 If	 the	 check	 works,	 it	 conEnues.	 	
–  So	 you	 basically	 have	 a	 situaEon	 where	 it’s	 either	 “	
–  And	 as	 you	 saw,	 it	 can	 be	 bypassed	

•  “Measured	 Boot”	 may	 allow	 the	 system	 to	 sEll	 boot	
even	 if	 an	 integrity	 violaEon	 occurs,	 but	 it	 allows	
integrity	 evidence	 to	 be	 collected	 and	 stored	 into	 a	
trustworthy	 locaEon	 like	 the	 TPM	
–  InformaEon	 can	 then	 be	 sent	 back	 to	 an	 “appraisal”	 server	
(in	 a	 process	 known	 as	 “remote	 aBestaEon”)	 for	 making	
the	 determinaEon	 of	 whether	 a	 system	 is	 infected	 or	 not	

4	

How	 computers	 do	 measured	 boot	

Boot	 Loader	

ApplicaEons	

OS/Hypervisor	

BIOS	
(Basic	 Input/Output	 System)	

Measure	 BIOS,	 OpEon	 ROMs,	 etc	 (before	 invocaEon)	
Store	 to	 TPM	

Measure	 boot	 loader	 (e.g.	 MBR)	
Store	 measurement	 to	 TPM	
Hand	 off	 to	 boot	 loader	

TPM	

Boot	 loader	 measures	 OS/
hypervisor	 before	 handing	 off	
OS/hypervisor	 measures	 apps,	 etc	 	

Trusted Platform Module* (TPM)
•  A physical chip soldered to the

motherboard
–  There are logical/software TPMs, but

not relevant to this course
•  And not a good idea

•  Passive chip. Programmed by
applications (like the BIOS)

•  Created by a committee of
companies and organization
collectively called the Trusted
Computing Group (TCG)

•  The goal of the TCG is to provide an
architecture that implements
Trusted Computing

•  Trusted Computing means that your
system will behave as expected or
at least be able to provide reports
indicating that it might not be

The	 TPM	 chip	 on	 the	 E6400	

*This	 is	 only	 a	 basic	 primer	 on	 TPM;	 just	 enough	 to	 understand	 the	 BIOS	 rela>on	 to	 the	 trusted	 compu>ng	 technologies	 which	 the	 TPM	 provides.	 Also,	 this	
is	 all	 based	 on	 the	 1.2	 Specifica>ons,	 since	 2.0	 is	 not	 finalized,	 and	 therefore	 hardware	 using	 it	 is	 not	 common	 yet.	 6	

TPM Functionality:
Platform Integrity Reporting

•  A TPM has 3 basic functions:
1.  Platform Integrity Reporting (aka: Root of Trust for Reporting)
2.  Platform Authentication
3.  Secure Storage

•  Platform Integrity Reporting is actually the only one that
is really applicable to this class

•  Includes the measurement performed by the BIOS code
(including UEFI)

•  Also includes the integrity reporting feature of the TPM to
provide a snapshot of the measurement state

•  We’ll cover this topic in a bit

7	

TPM Functionality:
Platform Authentication

•  A TPM has 3 basic functions:
1.  Platform Integrity Reporting (aka: Root of Trust for Reporting)
2.  Platform Authentication
3.  Secure Storage

•  Platform Authentication refers to creating Authentication
Identity Keys (AIK)
–  Used to sign PCR quotes

8	

TPM Functionality:
Secure Storage

•  A TPM has 3 basic functions:
1.  Platform Integrity Reporting (aka: Root of Trust for Reporting)
2.  Platform Authentication
3.  Secure Storage

•  Secure Storage provides two functions:
1.  Binding – Encrypts data. Data can be encrypted with a

migratable key so that it is bound to a specific TPM/platform or
it can be encrypted with a migratable key so that the data can
be migrated to another system. Caller provides the valid key to
decrypt.

2.  Sealing – Encrypts data (keys, etc.) so that it will only be
decrypted when the system PCRs are in a particular state.
Sealed data must be encrypted with non-migratable keys so the
data encrypted is bound to the platform/TPM.

•  Microsoft BitLocker uses the TPM Secure Storage
Sealing feature

9	

TPM Key Types
•  Endorsement Key

–  Permanently embedded in the TPM hardware at the time of
manufacture

–  The private part of the Endorsement Key is never released
outside of the TPM

–  Can be used to verify that software is communicating with an
actual TPM (as opposed to a malicious software application
pretending to be a TPM)

•  Storage Root Key
–  Created when the TPM is initialized by software
–  Used to encrypt/decrypt keys created by an application so that

they can be stored outside the TPM
–  Embedded in the TPM hardware, can be overwritten if the TPM

is cleared and re-initialized

10	

TPM Key Types
•  Migratable Keys

–  Can be migrated to another TPM/platform

•  Non-Migratable Keys
–  Stored within the TPM shielded storage
–  Cannot be migrated to another platform/TPM

•  Attestation Identity Keys (AIK)
–  Non-migratable keys
–  Used to sign "quotes" of PCR values when requested by an

application
•  Therefore the main key we often care about for “remote attestation”

11	

TPM	 Components	

Base	 diagram	 from	
hBp://www.intel.com/content/dam/doc/white-‐paper/uefi-‐pi-‐tcg-‐firmware-‐white-‐paper.pdf	

PCRs	

Implemented	 	
by the BIOS
developer

12	

Platform Integrity Reporting
•  This functionality combines what is called (in TPM-land) the

Root of Trust for Reporting (RTR) and the Root of Trust for
Measurement (RTM)

•  Per TCG: “The RTM is a computing engine capable of making
inherently reliable integrity measurements.*”

•  The code that performs the measurements are implemented
outside the TPM (as shown in the previous slide)
–  By the BIOS, for example.

•  There are two types of RTMs, Dynamic and Static.
•  Dynamic means that trust is established after the operating

system has booted. Trust is established even when the
system booted in an insecure state

•  Intel’s Trusted Execution Technology (TXT) uses DRTM
–  TXT is an entire course unto itself which Xeno is preparing
–  www.invisiblethingslab.com/resources/2011/

Attacking_Intel_TXT_via_SINIT_hijacking.pdf
*ISO/IEC	 11889-‐1	 InformaEon	 Technology	 Trusted	 Plaform	 Module,	 Pt.1	 	 13	

Static Root of Trust for Measurement*
(SRTM)

•  Also called Measured Boot (Not to be confused with Secure
Boot, that’s a different entity discussed in the UEFI portion)

•  General idea is that the next component of the boot
sequence is measured before control is handed off to it

•  Thus forms a “chain of trust” where each component has
been measured before it executes

•  “Static” refers to the idea that the same components are
measured each time and that their measured values
should not change

•  Begins life in the BIOS so its implementation is thus the
responsibility of the vendor

•  The first of these measurements is called the Core Root
of Trust for Measurement (CRTM)

*Ogen	 referred	 to	 as	 S-‐CRTM,	 StaEc-‐Core	 RTM	 14	

Core Root of Trust for Measurement
(CRTM)

•  Whereas it’s said the SRTM forms a “chain of trust”, the
CRTM forms the “anchor”

•  CRTM is responsible for measuring the next component
in the boot sequence (next link in the chain)

•  Being part of the overall SRTM, it always begins life in
the BIOS

•  As a guideline, CRTM should perform its measurements
as soon as possible (start establishing trust sooner than
later)

•  According to the TCG, the “TPM and CRTM are the only
trusted components on the Motherboard” (TCG PC
Client Specification for Conventional BIOS)

15	

Measured	 Boot	 ("measured	 boot"	 !=	 UEFI	 "secure	 boot")	

BIOS	 code	 on	 flash	 chip	
Core	 Root	 of	 Trust	 for	 Measurement	

(CRTM)	

BIOS	 configuraEon	
in	 non-‐volaEle	 RAM	
("nvram"/"CMOS")	

Measure	 1	

Master	 Boot	 Record	
	
	

ParEEon	 Table	

M
ea
su
re
	 5
	

M
ea
su
re
	 4
	

Peripheral's	 	
opEon/expansion	

ROMs	 code	
	

Config	

Peripheral's	 	
opEon/expansion	

ROMs	 code	
	

Config	

Peripheral's	 	
opEon/expansion	

ROMs	 code	
	

Config	

Measure	 0	

Trusted	 Plaform	 Module	 (TPM)	

Ex
te
nd

	 P
CR

0	

Ex
te
nd

	 P
CR

1	

Ex
te
nd

	 P
CR

2	

Ex
te
nd

	 P
CR

3	

Ex
te
nd

	 P
CR

4	

Measur
e	 3	

Ex
te
nd

	 P
CR

5	

…	

This	 collecEon	 of	 measurements	 going	 forward	 is	 the	 	
StaEc	 Root	 of	 Trust	 for	 Measurement	 (SRTM)	 16	

CRTM (im)Mutability
•  “The Core Root of Trust for Measurement (CRTM) MUST

be an immutable portion of the Host Platform’s
initialization code that executes upon a Host Platform
Reset”

•  “immutable means that in order to maintain trust in the
Host Platform, the replacement or modification of code or
data MUST be performed by a Host Platform
manufacturer-approved agent and method.”*

•  Basically they are telling vendors that they know the
CRTM will be implemented on mutable flash hardware,
but that they will be in compliance as long as its only
their code that ever changes it.

•  That works great until it doesn’t…
*TCG PC Client Implementation for BIOS 17	

Platform Configuration Registers
(PCRs)

•  The measurements of each component are stored on the
TPM in registers

•  There are at least 16 PCRs on a TPM, each 20 bytes
long

•  Initialized to 0 each time the platform is reset
•  Can only be modified by an extend function
•  PCR[n] = SHA-1 (PCR[n] || measured data)

–  where || denotes concatenation

•  So basically, each PCR represents the state of one or
more boot components (at the time of measurement)

•  Each boot component is represented as a SHA-1 hash

18	

PCR Standard Usage
PCR	 Use	

0	 S-‐CRTM,	 BIOS,	 Host	 Plaform	 Extensions,	 and	
Embedded	 OpEon	 ROMs	

1	 Host	 Plaform	 (Motherboard)	 ConfiguraEon	

2	 OpEon	 ROM	 code	

3	 OpEon	 ROM	 ConfiguraEon	 and	 Data	

4	 IPL	 Code	 (usually	 the	 MBR)	 and	 Boot	 ABempts	

5	 IPL	 Code	 ConfiguraEon	 and	 Data	

6	 Power	 State	 TransiEon	 (sleep,	 hibernate,	 etc.)	

7	 Defined	 by	 OEM	

8-‐15	 Unassigned	

•  Each PCR is intended to store a different measured
component, defined by TCG

•  The implementation is actually up to the vendor

IPL	 =	 IniEal	 Program	 Loader,	 typically	 the	 Master	 Boot	 Record	 (MBR)	 19	

General Problems with PCR Hashes

1.  The	 TCG	 specificaEon	 gives	 vague	 guidelines	 on	 what	 should	 be	 incorporated	 into	 individual	 PCR	 values,	 and	
many	 decisions	 are	 leg	 to	 the	 vendor.	

2.  Based	 on	 our	 own	 observaEon	 of	 PCR	 values	 across	 various	 systems.	

Example E6400 PCR Set:	

	

•  Opaqueness
–  Generally no golden set of PCRs is provided by the OEM.

•  Some vendors like HP have started to finally provide this! Yay!
–  No description of what is actually being measured and incorporated into

the PCR values.1

–  “Homogeneous” systems can have different PCR values.2
–  Duplicate PCR values are unexpected if they're measuring different

data…

20	

E6400 PCR0 (CRTM) Measurement

•  PCR0 should contain a measurement of the CRTM and other
parts of the BIOS.

•  In the above diagram, the dark areas represent what the E6400
actually incorporates into the PCR0 measurement.

•  Only 0xA90 of the total 0x1A0000 bytes (.15%) in the BIOS
range are incorporated, including:
–  The first 64 bytes of the 42 compressed modules.
–  Two 8 byte slices at 0xDF4513C0 and 0xDF4513C7.
–  The CRTM is not incorporated at all.

*Typo in image: BIOS Base on the E6400 is located at FFE6_0000h

*	

21	

Implications of the weak SRTM

•  Measurements for things like PCI option ROMs and BIOS
configuration are not actually captured.

•  We can modify the majority of the E6400 BIOS without
changing any of the PCR values.
–  Yuriy Bulygin presented a similar discovery at CanSecWest 2013

regarding his ASUS P8P67
•  "Evil Maid Just Got Angrier: Why Full-Disk Encryption With TPM is Insecure

on Many Systems" – Yuriy Bulygin – March 2013
http://cansecwest.com/slides/2013/Evil%20Maid%20Just%20Got
%20Angrier.pdf

•  As long as the Flash can be modified, the measurement code
which executes from the flash can be modified to report false
negatives

•  Let’s take a look at some weaknesses that come along with a
S-CRTM that provides incomplete coverage

22	

Reading PCRs with OpenTPM

•  Corey Kallenberg wrote OpenTPM which queries and
dumps the PCR register set

•  Open source: https://code.google.com/p/opentpm/
•  Activate/enable your TPM in your BIOS settings to use it

23	

vulnBIOS Example: Incomplete S-
CRTM Coverage

•  Either view your existing BIOS dump or make a new one
using Copernicus

•  Open in HxD and skip to the end (entry vector)
•  Notice bytes 3F_FFFB – 3F_FFFE are 0h

24	

vulnBIOS Example: Incomplete S-
CRTM Coverage

•  This will only run on E6400 systems!
•  Execute the ‘tpm_spi_write_no_change_pcr.sys’ driver
•  This writes DEADBEEFh as you can see (in this case, on this

system, this does not prevent the system from booting, YMMV!!!)
•  Reboot

25	

vulnBIOS Example: Incomplete S-
CRTM Coverage

•  After rebooting the system,
–  Required because the BIOS has to re-run the measured boot process and

re-populate the PCRs
•  Re-run the OpenTPM driver
•  Notice in particular PCR0 is the same (they are all the same)
•  So an attacker can modify big chunks of the BIOS without triggering

a change to PCR0!
•  But wait – it gets worse!

26	

The Real Weakness: Mutable CRTM

•  Don’t let the sparse measurement coverage in the previous slide
distract you from the real issue – it is a red herring!

•  What *really* makes the S-CRTM weak is the fact that the CRTM is
implemented on mutable flash hardware (the BIOS)

•  As we’ve seen, it can be trivial to overwrite the BIOS flash
•  An attacker who identifies the part of the BIOS that performs the

CRTM measurement can simply overwrite it and therefore control it
•  It doesn’t matter even if the ENTIRE BIOS is being measured

–  The attacker may just have to work a little harder

*	
SEll	 weak;	 assuming	 the	
aBacker	 can	 get	 into	
SMRAM	 or	 overwrite	 the	
flash	 either	 by	 exploiEng	 a	
code	 vulnerability	 or	
misconfigured	 system	

27	

Normal	 BIOS	 PCR0	 Measurement	

SPI	 Flash	

System	 RAM	

BIOS	

SHA1(self)	

0xf005b411…	

PCR0=SHA1(020	 |	 0xf005b411…)	

0	 4GB	

28	

PCR0	 Measurement	 with	 a	 Tick	

SPI	 Flash	

System	 RAM	

BIOS	

SHA1(self)	

PCR0=SHA1(020	 |	 0xf005b411…)	

0	 4GB	

29	

Mutable S-CRTM Problem

•  But actually, if the attacker can write to the BIOS, they can modify
any/all of the BIOS regardless of whether its being measured and
simply forge the PCR values

•  hBp://www.youtube.com/watch?v=S0lRcm3jvFo
30	

Quick Diversion: RW Everything Scripting

•  RW Everything is a good tool for gathering all kinds of
information about the system

•  It has a scripting interface and a good command set so
it’s good for prototyping commands that touch bare-metal
without writing a kernel driver (assuming windows, if
Linux then just IOPL your way to Ring0 bliss)
–  Just be wary of syntax and expect a kernel crash now and then if

you make a mistake
–  I’ve found that 64-bit Windows is more sensitive to RWE-related

crashing

•  This lab serves to show you some of RWE’s scripting
capabilities and how to use it for quick testing of ideas

31	

Use RW-E Scripting to Read a PCR
•  Open RW

Everything
•  Click on the CMD

icon

32	

Use RW-E Scripting to Read a PCR
•  On your Desktop

find the file named
“ReadPCR0.rw”

•  The file contents
are on the next
slide in case you
have to enter it by
hand or don’t want
to do the lab but
just see what
features RW
Everything offers

33	

#	 This	 is	 the	 PCR	 Command	 Blob	
>W	 0xfed40000	 0x20	
>W	 0xfed40000	 0x02	
>W	 0xfed40018	 0x40	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0xc1	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0x0e	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0x15	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0x00	
>W	 0xfed40024	 0x00	
#	 THIS	 IS	 THE	 #	 PCR	 YOU	 WANT	 TO	 READ	 (0-‐16	 OR	 WHATEVER)	
>W	 0xfed40024	 0x00	
>W	 0xfed40018	 0x20	
#	 ok	 now	 read	 the	 PCR:	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	
>R	 0xfed40024	

RW Everything Commands
•  Commands in ReadPCR0

are on the left
•  Be wary of syntax!
•  W 0xFED4000 0x20

–  Writes a Byte to 0xFED4000
(physical address)

–  W16 will write a Word
–  W32 will write a DWord

•  R 0xFED40024
–  Reads a Byte from physical

address 0xFED40024

•  Yes it’s ugly but can still be
leveraged to save you time
to test a PoC

Change	 this	 one	 to	 	
read	 a	 different	 PCR	

(0	 -‐	 N)	

34	

MMIO	 to	 the	 memory	
address	 range	 reserved	

for	 TPMs	

Note	 how	 we	 just	 keep	
reading	 the	 same	 data	
locaEon	 and	 will	 keep	

gevng	 back	 different	 data	

Use RW Everything to Read a PCR
•  If OpenTPM works

on your system, then
this will too

•  Output is a bit
verbose, but the
PCR value will be in
there after the
header

•  I couldn’t expand the
output window to
capture the whole
PCR for the
screenshot

•  But still good for
prototyping, testing,
probing

35	

Trusted	 CompuEng	 Research:	
Timing-‐Based	 ABestaEon	 (TBA)	

"Build your software so that if its code is modified, it runs slower."

•  CMU has done a lot of research in this area (Seshadri, et al)
and we applied it to the protection of Windows kernel memory
& the BIOS

•  Uses a timing side-channel to provide constant runtimes in
absence of an attacker

•  For the BIOS, it’s meant to replace the CRTM only, not the
entire SRTM

•  Presenting this briefly just to provide an example of one way
to protect a mutable codebase (e.g. embedded systems, HD
firmware, NIC firmware, phone bootloaders, etc)

•  Could be executed immediately upon system boot

36	

Two	 Components	 of	 	
“BIOS	 Chronomancy”	

1	

BIOS	 Chronomancy	

2	

37	

•  Reads	 its	 own	 data	
–  Incorporated	 into	 checksum	 so	 if	 it	 changes	 the	 checksum	
changes	

•  Reads	 its	 own	 data	 pointer	 and	 instrucEon	 pointer	
–  Indicates	 where	 in	 memory	 the	 code	 itself	 is	 reading	 and	
execuEng	

•  Nonce/PseudoRandom	 Number	 (PRN)	
–  Prevent	 trivial	 replay,	 decrease	 likelihood	 of	 precomputaEon	
due	 to	 storage	 constraints	

•  Do	 all	 the	 above	 in	 millions	 of	 loop	 iteraEons	
–  So	 that	 ideally	 an	 instrucEon	 or	 two	 worth	 of	 condiEonal	 checks	
per	 loop	 iteraEon	 leads	 to	 millions	 of	 extra	 instrucEons	 in	 the	
overall	 runEme	

Self-‐Check	 Requirements	

38	

Simplified	 Self-‐Check	 Component	

•  Each	 block	 differs	 from	 the	
others	 so	 abacker	 will	 have	
to	 forge	 every	 block	

“blocks”	

39	

Self-‐Check	 “Pseudo-‐Random	 Walk”	

En>re	 BIOS	 	
Chronomancy	 range	
is	 measured	 by	 the	 	
self-‐check,	 including	
the	 por>on	 that	
performs	 the	 linear	
sweep	 measurements	

•  Pseudo-‐Random	 based	
on	 Tick	 Session	 Nonce	
obtained	 from	 TPM	

•  Iterates	 through	 the	 	
blocks	 a	 million	 >mes	
or	 so	

40	

Linear	 Sweeps	

BIOS	 Chip	

•  Measures	 BIOS,	
Op>on	 ROMs,	
SMRAM,	 IVT,	 and	
anything	 else	 you	
want.	

41	

ABackers	 Dilemma:	 1	 of	 3	

BIOS	 Chip	

•  Abacker	 wants	 to	
implement	 a	 rootkit	 and	
of	 course	 wants	 to	 hide	
its	 presence.	

•  Abacker	 is	 aware	 of	 BIOS	
Chronomancy	 and	
understands	 how	 to	
works.	

•  Abacker	 knows	 if	 he	 does	
nothing	 the	 linear	
sweeps	 will	 detect	 his	
presence	 in	 the	 BIOS.	

•  The	 >ming	 measurement	
will	 be	 okay,	 but	 the	
calculated	 checksum	 will	
differ	 from	 the	 expected.	

>:(

Gotcha!

42	

ABackers	 Dilemma:	 2	 of	 3	

BIOS	 Chip	

•  Modifies	 the	 linear	
sweep	 code	 to	 hide	 his	
presence.	

•  Turns	 out	 the	 penalty	 for	
modifying	 the	 linear	
sweep	 code	 is	 negligible.	

>:(
Conceal!

43	

ABackers	 Dilemma:	 3	 of	 3	

BIOS	 Chip	

•  However,	 now	 the	
abacker	 must	 also	 hide	
the	 changes	 he	 made	 to	
the	 linear	 sweep	 code	
from	 the	 self-‐check	
measurement.	

>:(

Conceal!

•  Turns	 out	 the	 abacker	
suffers	 tremendous	
penal>es	 when	
modifying	 the	 self-‐
check.	

44	

16700	

16800	

16900	

17000	

17100	

17200	

17300	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	

TP
M
	 T
ic
ks
	

Measurement	 Instance	

18	 E6400s	 with	 customized	 BIOS	 Chronomancy	 firmware	
625k	 self-‐check	 itera>ons	 (diff	 =	 ~4.8ms)	 	

Without	 aBacker	 With	 bare-‐minimal	 aBacker	

1	 >ck	 =	 64	 μs	

Diff	 is	 ~4.8	 ms.	 ABacker	 can	 win	
someEmes,	 as	 shown	 by	 measurement	

Emes	 that	 overlap.	

45	

21000	

21200	

21400	

21600	

21800	

22000	

22200	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	

TP
M
	 T
ic
ks
	

Measurement	 Instance	

18	 E6400s	 with	 customized	 BIOS	 Chronomancy	 firmware	
1.25M	 self-‐check	 itera>ons	 (diff	 =	 ~32ms)	 	

Without	 aBacker	

1	 >ck	 =	 64	 μs	

Diff	 is	 ~32	 ms.	 ABacker	 does	 not	 win	
in	 this	 scenario.	

With	 bare-‐minimal	 aBacker	

46	

29500	

30000	

30500	

31000	

31500	

32000	

32500	

33000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	

TP
M
	 T
ic
ks
	

Measurement	 Instance	

18	 E6400s	 with	 customized	 BIOS	 Chronomancy	 firmware	
2.5M	 self-‐check	 itera>ons	 (diff	 =	 ~	 128ms)	

Without	 aBacker	

1	 >ck	 =	 64	 μs	

Diff	 is	 ~128	 ms.	 ABacker	 does	 not	
win	 in	 this	 scenario.	

With	 bare-‐minimal	 aBacker	

47	

TBA Summary
•  TBA was discussed briefly just to introduce you to one

technique that can mitigate the weakness of a mutable
CRTM

•  Is it perfect? Nope – and I’ll explain why in a sec
•  TBA code is open sourced for others to investigate if you

feel inspired to experiment with it and improve it:
–  http://code.google.com/p/timing-attestation/

•  Timeline of other related work here:
–  hBp://bit.ly/11xEmlV	

•  Of course the simplest fix would be to:

Implement the CRTM on a small, truly immutable, ROM
•  Provided the remainder of the chain of trust is measured properly

48	

The	 past	 decade	
(available	 at	 hBp://bit.ly/11xEmlV)	

49	

TBA Problems: There are a few
•  Does not prevent a TOCTOU attack
•  The timer on the TPM must be reset to zero each time

the system is reset
–  Provide a consistent “window of time” in which a good

measurement was initiated
–  Otherwise the attacker could simply perform the measurement at

a later time after having made the proper preparations

•  There is no trusted way to determine whether a
measurement has been “skipped” due to platform reset
before (or after) TBA execution (BIOS reset, etc.)
–  Still doesn’t solve the evil maid problem
–  Measurement will run while Evil Maid’s evil boot loader is

installed, but after the evil maid resets the system and removes
herself the next measurement will report a clean system

50	

Measured Boot Early in Boot Process
•  One question about the measured boot process is regarding

the question of ‘when’ it is to begin
•  Since the spec wants each boot component to be measured

before execution control is handed off to it, it seems logical
that the measured boot process should begin as early as
possible in the boot process

•  Of course this is vendor-dependent as to when they start this
process

•  I’ve observed that on the Dell E6400 that this process begins
very “late” after “a lot” of code has already executed (chipset
configuration, SMM instantiation, etc.)

•  I believe it should be done following the entry vector after the
system has switched to protected mode

•  And not because “it’s better if it’s run early” since the flash is
still mutable regardless…

•  My reason: because an analyst will be able to easily find the
CRTM code and verify that it “looks right” without having to
RE so much of the BIOS just to find it

51	

Measured Boot Early in Boot Process
•  Technically, this is feasible because the TPM extends

hashing functions to the BIOS and it is a memory-
mapped device

•  So this is technically feasible:
–  Ensure TPM is mapped to memory (location is typically hard-

coded in chipset)
–  Initialize the TPM itself and extend measurements to PCR0
–  As in accessing the memory-mapped BIOS, we’re not actually

reading memory, we’re accessing a different device
•  Why isn’t this done? Probably because the BIOS flash

and TPM are both very slow when compared to memory
•  And booting quickly is the most important thing in the

world!
•  Vendors should at least provide the option for those who

care and need it…it only has to measure a small amount
of binary. (Ok I’m off my soap box now)

52	

Better CRTMs coming down the pipe:
Intel Boot Guard

•  Can’t say much on this at the moment (most docs under NDA, and
haven’t evaluated it yet anyway)

•  Intel says "Hardware-based boot integrity protection that prevents
unauthorized software and malware takeover of boot blocks critical
to a system’s function, thus providing added level of platform
security based on hardware."

•  Implements the CRTM notionally on the processor itself
•  Firmware boot block is measured/verified before the processor

starts executing the SPI flash entry vector
•  Provides the following two basic functions

–  Measured Boot
–  Verified Boot

hBp://www.intel.com/content/dam/www/public/us/en/documents/product-‐briefs/4th-‐gen-‐
core-‐family-‐mobile-‐brief.pdf	 53	

Better CRTMs coming down the pipe:
Intel Boot Guard

•  It's effectively bringing to the client a superset of the way
Intel Trusted Execution Technology (TXT) on Intel Xeon
servers has apparently always worked: Running a TXT
Authenticated Code Module (ACM) right from CPU reset

From	 "Intel	 Trusted	 ExecuEon	 Technology	 for	 Server	 Plaforms"	 54	

Better CRTMs coming down the pipe:
HP Sure Start

•  New	 integrity	 &	 availability	 technology	
•  Implemented	 in	 Embedded	 Controller	 (EC)	

–  They	 say	 the	 EC	 starts	 from	 a	 true	 ROM,	 which	 would	
essenEally	 be	 the	 S-‐CRTM	 for	 subsequent	 measurement	 of	
BIOS	

•  Integrity:	 Checks	 a	 por-on	 of	 the	 flash	 chip	 (likely	 only	
the	 boot	 block),	 and	 if	 it	 does	 not	 have	 the	 expected	
configuraEon,	 restores	 that	 porEon	 from	 EC	

•  Availability:	 If	 the	 integrity	 check	 fails,	 as	 it	 might	 if	 the	
chip	 was	 wiped	 to	 aBempt	 to	 brick	 the	 BIOS,	 then	 this	
provides	 a	 non-‐aBach-‐probes-‐to-‐the-‐SPI-‐chip	 recovery	

•  We	 generally	 see	 this	 as	 a	 Good	 Thing™	 ,	 and	 we'd	 like	
to	 see	 more	 and	 more	 robust	 tech	 like	 this	 from	 other	
vendors	

55	

HP	 Sure	 Start	

•  Supported	 models	 as	 of	 April	 2014,	 according	
to	 an	 email	 to	 us	 from	 HP	
– Elitebook	 820	 G1	
– Elitebook	 840	 G1	
– EliteBook	 850	 G1	
– Zbook	 15	
– Zbook	 17	
– EliteBook	 Folio	 1040	 G1	
– EliteBook	 Revolve	 810	 G2	

56	

TPM and Bootkits
•  We have learned that signed firmware updates ensure

that only an authorized BIOS can be installed to flash
•  However firmware signing won’t protect the system from

a malicious boot loader, for example, which can be
located on the hard disk

•  We know that the measured boot process can detect
changes to critical boot components like the BIOS and
MBR

•  But unless that detection is paired with something which
provides protection (like Bitlocker or Secure Boot), a
malicious MBR, for example, can still execute

•  Detection alone could be enough if your TPM is active
and you are actively observing your PCRs
–  Few seem to be

57	

TPM: Additional thoughts
•  You should activate your TPM in your BIOS
•  Flawed or not, it’s better than nothing L
•  Typically the BIOS will recognize automatically that the

TPM is activated and you will get all the vendors
measured boot functionality “for free”

•  Additionally you have to actually observe your PCRs for
changes
–  Believe it or not, some people enable the TPM, check

a box, and say “I’m secure now”
•  Your OEM *might* have a tool you can use to that effect;

otherwise use OpenTPM

58	

Another High-Level Problem:
Untrusted Tools

•  So we’ve covered how the TPM CRTM may not really
provide trustworthy information

•  But every tool we use to gather system information
shares this problem

•  We’re relying on tools which have no means of attesting
that the data we intended to read was in fact the data
that was reported to us

•  We saw this in the Flea attack video where the PCRs
were forged
–  We thought we were reading good BIOS, but in fact it was pure

concentrated evil!

•  An attacker could either attack the tool itself or MitM the
data as it’s being read by the application (via VMX for
example)

59	

