
Welcome! Before we get started with the course, we thought it would be fun to take a quick look at a really interesting attack that took place recently. To tell you the truth, when the story
broke, we looked at each other and realized that you couldn't have scripted a better example for us. Many of the things that we will talk about today were part of this coordinated attack.

Now, we all know that the code we write must meet certain levels of quality and sophistication, and if developed incorrectly we could be enabling attacks on our critical systems. But it is hard
to understand how real this problem actually is and how big of a role our little application may play in an attack on our company. Or for that matter, an attack on our boss' personal computer.
Well, in February, as the opening kickoff of the Super Bowl was sailing down the field, we saw what our mistakes can lead to. A hacker group know as Anonymous leveraged many coding
mistakes to break into a database, crack passwords, steal research, read email, deface a website, and in the end result in the resignation of a CEO. And by the way, the victim, HBGary
Federal, was a security firm that does contract work with the Government. It could just have easily been your organization.

The story is actually quite impressive, not because of the sophistication of the attack, but because of the LACK OF SOPHISTICATION that was needed. HBGary Federal's website was
powered by a content management system (CMS). Rather than using an off-the-shelf tool, HBGary Federal decided to commission a custom CMS from a third-party developer. The custom
solution was poorly written and assuming HBGary Federal had conducted a vulnerability assessment of the software - which is, after all, one of the services the company offers - then this
assessment overlooked a substantial flaw. The CMS was susceptible to a kind of attack called SQL Injection. SQL injection is possible when the code that deals with parameters to an SQL
query is weak. Many applications need to join parameters from a Web front-end with hard-coded queries, and then pass the whole concatenated query to the database. Often, they do this
without verifying the validity of those parameters. This exposes the system to SQL injection. Attackers can use specially crafted parameters that cause the database to execute queries of the
attackers' own choosing.

This type of attack was used to retrieve from the CMS the list of usernames, e-mail addresses, and password hashes for many of the HBGary Federal employees.

In spite of the rudimentary SQL injection flaw, the designers of the CMS system were not completely oblivious to security best practices. For example, the user database did not store
passwords in readable plain-text form, rather it stored only hashed passwords. In other words, passwords that have been mathematically processed by a hash function to yield a number
from which the original password can't be deciphered. The CMS used the popular hashing algorithm MD5, but they used MD5 badly as there was no iterative hashing and no salting. The
result was that the downloaded passwords were highly susceptible to rainbow table based attacks, performed using a rainbow table based password cracking website. A rainbow table is a
pre-computed collection of hash values and the passwords that generated them. An attacker can then look up the hash value that they are interested in and see if it's in the table. If it is, they
can then determine the password that results in that hash value.

Even with the flawed usage of MD5, HBGary Federal could have been safe thanks to a key limitation of rainbow tables, namely that each table only spans a specific "pattern". So for
example, some tables may support passwords of 1-8 characters made of a mix of lower case and numbers, while other can handle only passwords of 1-12 characters using lower and upper
case only. Alas, two HBGary Federal employees - CEO Aaron Barr and COO Ted Vera - used passwords that were very simple. Each was just six lower case letters and two numbers.
Such simple combinations are likely to be found in any respectable rainbow table, and so their passwords were trivially compromised.

So now the hackers had the username and password for the CMS for two users, the CEO and COO. Unfortunately, neither Aaron nor Ted followed best practices by not reusing passwords
across different systems. Instead, they used the same password in a whole bunch of different places, including e-mail, Twitter accounts, and LinkedIn. The hackers quickly downloaded
email, attachments, tweets, and other correspondence. Some of these turned out to be proprietary and rather embarrassing.

Along with this, HBGary Federal had a Linux machine, support.hbgary.com, on which many HBGary Federal employees had shell accounts with SSH access, each with a password used to
authenticate the user. One of these employees was Ted Vera, and his SSH password was identical to the cracked password he used in the CMS. This gave the hackers immediate access to
the support machine. SSH doesn't have to use passwords for authentication. Passwords are certainly common, but they're also susceptible to this kind of problem (among others). To
combat this many organizations, particularly those with security concerns, do not use passwords for SSH authentication. Instead, they use public key cryptography: each user has a key
made up of a private part and a public part. Many organizations use something like SecureID along with a passcode. Had this been used for HBGary Federal's server, it would have been
safe. But is wasn't, so they weren't.

Although attackers could log on to this machine, the ability to look around and break stuff was curtailed: Ted was only a regular non-superuser. Being restricted to a user account can be
enormously confining on a Linux machine. The only way the hackers could have some fun would be to elevate privileges through exploiting a privilege escalation vulnerability. Unfortunately
for HBGary Federal, the system was vulnerable to just such a flaw. The error was published in October 2010, conveniently with a full working exploit. By November, most distributions had
patches available, and there was no good reason to be running the exploitable code in February 2011. Exploitation of this flaw gave the hackers full access to HBGary Federal's system. It
was then that they discovered many gigabytes of backups and research data, which they duly purged from the system.

1

The previous example does a great job of introducing many of the concepts
that we will talk about in this course. Our hope is that by the end of today you
will understand the concepts of secure coding and know what to think about
when you develop your next application. Obviously, with only one day to give
this course, the expectation is not that you will never make a mistake in you
code again, but rather that you will know where common mistakes are often
made and have some knowledge of what to be on the lookout for so that
further review of the code can be attempted. Let's get started!

2

3

After class introductions, we will walk through the types of threats to our
applications and some general application security concepts. We will introduce
a great resource for developers: CWE. We will then dive into the seven
security mechanisms that we all should be aware of.

4

5

6

There are many different threats to our applications that come from many different actors. These range
from inexperienced kids looking to have some fun to powerful nation states looking for a political or
military advantage.

Script kiddies are the least experienced individuals and are often more of nuisance then a malicious
threat. They are motivated by the learning experience and not usually after something of value. They
leverage existing exploits and usually need tools to do all the work for them. Keeping systems patched is
often enough to keep the script kiddies away.

Hacktivists are slightly more advanced but still are not usually out for personal gain. They want to send a
message by taking a site down or defacing the home page. Granted, the loss in dollars of such actions
can be extraordinary to some businesses. Hacktivists will usually move on to other targets if the
applications are not easy to break.

A hacker is the start of truly skilled attackers. They usually have spent years developing their trade and
often craft some very tricky exploits. Yet hackers are usually motivated by the advancement of their skills
and fame. They are not in it for serious monetary gain.

Cyber Criminals are much more motivated than your typical hacker. They often employee teams of
individuals and have resources that are well beyond those of hackers and hacktivists. They know how to
link different exploits together and are hard to stop. Of course the bigger concern is that they usually
target a specific application and will work until they find a way in.

The advanced persistent threat (APT) is the top of this food chain. Often driven by nation states, the APT
has unlimited resources and involves the best of the best in the world of hackers. They have specific
targets and, unlike the previous groups, they will not be easily deterred by the challenge and move on to

7

Application security is typically treated in terms of three separate goals:
Confidentiality, Integrity, and Availability. All three must be achieved for an
application to be considered secure.

Confidentiality involves making sure that information in the application is only
seen by those that should see it. Improper authentication, unauthorized
access, information exposure all lead to a breach of confidentiality. The more
sensitive the information held within an application, the more serious this goal
is.

Integrity involves making sure that information is correct and hasn't been
altered. The more important the role of the application, the more important it is
for its information to be trusted as decisions are made based on this
information. If a malicious user can change the information, then they can
affect the decisions being made.

Availability is concerned with the ability of a user to access the application and
complete their mission. If the information in an application is not available,
then decisions that are based on this information can not be made.

8

To achieve the application security goals talked about on the previous slide, a
number of principles have been defined that will help a developer when
designing and coding an application. The principles will be discussed in the
following slides.

With a strong set of application security principles in place, developers are
then ready to learn the mechanisms to implement the principles. It is the
mechanisms that will be the focus of this course.

MECHANISMS

- Authentication
- Authorization
- Data Validation
- Session Management
- Error Handling
- Logging
- Encryption

9

The first application security principle is to minimize the attack surface. The
more places that a malicious user can interact with an application (usually the
inputs to the application), the more places that a developer has to put
defenses in place. If an input type is not needed, then don't allow it. If an
application doesn't need to listen on a given port, then don't let it. If all user
input can be collected in one place and then retrieved, this beats collecting the
information at varying points within an application. The less opportunity that a
malicious user has to interact, the easier it will be to focus development effort
on those places where the attacker can interact and to create a sound set of
defenses.

10

The second principle is to make sure that the default state is secure.
Installation may be performed by an unqualified individual, or by someone
without knowledge of how the application will be used and what information it
will contain. In addition, the person installing an application may assume the
user will configure, and the user will assume that the admin configured,
resulting in no one configuring the application. Make sure that people must
consciously make changes if those changes will reduce the security of the
application. For example, force them to open a port to allow communication
instead of relying on them to close a port if communication is not needed.

Don't prop the front door open assuming the person behind you will shut it.
What if that person never comes or was home sick that day?

11

The next application security principle is to understand that not everyone
needs access to everything all the time. As developers we need to understand
who needs access and only give it to those individuals. This is a key defense-
in-depth principle. If a malicious user is able to penetrate your defenses, make
sure that they don't get the keys to the kingdom.

Do the security guards really need keys to the vault? Most likely they only
need access to the area around the vault. Make the attackers job harder by
forcing them to manipulate the security guard AND the manager. For the few
times that a security guard may need to get into the vault, have them ask a
manager for access.

12

The next principle is defense in depth. Similar to least privilege, you don't want
to rely on just one security mechanism, but rather layer multiple defenses on
top of each other. That way if one mechanism fails, then an attack will still be
stopped by a different defense.

For example, a bank does not just lock its front door. Bankers also lock the
vault, have security guards, use motion detectors, etc. An attacker needs to
defeat all of these defenses in order to achieve their goal. The same needs to
be true regarding applications. Don't just rely on a login. Also implement least
privilege, logging, data validation, etc.

13

Another application security principle is to fail securely. Security controls
should assume an attack by default and only let something pass if it is proven
not to be an attack. By taking this approach, holes that we forget to cover will
not lead to a valid attack, but rather to a bug report.

For example, showing a cop the license above should fail since Larry is
obviously not Brad Pitt. But this failure should not result in Larry getting away
with the crime. The failure should occur before person in custody is released.
Failure after release means that there is no way of knowing who the person
really is.

In addition, WHEN a security control fails, the application should revert to a
secure state.

14

The next application security principle is not to trust 3rd party services. Just
because a service claims to do something right, doesn't mean it actually does.
Inherently distrust data being returned from a 3rd party. You don't know the
quality of development, the adherence to best practices, or the motivations
behind the developers of 3rd party services.

You wouldn't just give all your money to a person driving an armored truck,
rather you would first verify that the truck isn't a fake and hadn't been hijacked.

15

Another application security principle is separation of duties. Ideally you want
to split the roles for actions related to a security decision. You want to avoid
having a single group being responsible for everything. This difference in
responsibility adds to an application's defense in depth as both groups or roles
must participate in a given attack.

Using the bank example again, you would not want the same person to be
able to change the address of an account and also authorize a check to be cut
against that account. Otherwise, an attacker who found a way to impersonate
that person could change the address to their own, authorize a withdrawal, and
then change the address back. A more secure approach would be to have one
group handle change of address requests and a separate group be
responsible for authorizing checks.

16

Another application security principle is to avoid security by obscurity.
Hackers, criminals, and the advanced persistent threat most likely can reverse
engineer your source code, or find things that are supposedly hidden. Relying
on obscurity is dangerous and is usually just a cover for real security not being
implemented.

It is better to assume the attacker has all your secrets and then devise security
mechanisms that protect the application in the face of this reality.

For example, the warfighter might be hidden from a typical attacker, but one
with heat sensitive goggles would have no problem getting past the
camouflage.

17

This principle is keep security simple. All too often a developer will over-
engineer security and end up adding things that aren't necessary and
introducing errors due to the complexity. The goal should be to design a
security architecture that works, yet in the simplest way possible. Added
complexity will not only make it harder to implement, but it will make it harder
for a peer or a security team to review.

18

The final application security principle is to fix security issues correctly. This
sounds a bit funny, but people often are made aware of an attack and put in a
mechanism to stop that specific attack without fixing the underlying problem. A
malicious user just changes the attack and is back inside the application.

As a developer you need to fully understand the problem before trying to
engineer a fix.

19

In the end, secure coding really comes down to the different mechanisms that
are available to ensure adherence to the previously mentioned application
security principles. The rest of this class will discuss these different
mechanisms, breaking each down into a number of "words to live by".

These words to live by should be reviewed at the start of each project and be a
part of the security design that kicks off a development effort.

20

The security mechanisms that we will cover are:

- Authentication
- Authorization
- Data Validation
- Session Management
- Error Handling
- Logging
- Encryption

These security mechanisms each map back to our high level application
security goals and enable us to sufficiently meet all three goals.

21

One project that everyone should be aware of, and a project we will mention a
lot throughout this course, is the Common Weakness Enumeration (CWE).
This is a MITRE-run initiative to enumerate and provide standard identifiers for
the different coding-level security-related mistakes that developers often make.
This standard identifier enable security personnel to share information about
weaknesses and for tools to report findings in a way that review teams can
easily grasp.

Each of our words to live by is presented in terms of CWE and it is
recommended that everyone take some time to review these specific CWE
entries.

The CWE team also compiles a Top 25 list each year that helps identify the 25
most dangerous and prevalent software errors that we see today. This list is a
great way to keep the most common issues in the forefront of a developer's
mind and help focus effort to make sure that these errors are not introduced.

22

Finally, we will attempt to bring the flaws we talk about to life via a demo
representing a fictional online application. The application does not follow the
security mechanisms we will talk about and we will show how this leads to
successful attacks by malicious users.

** During class, instructors will take this opportunity to bring up the website and
give a quick look & feel for the site. **

23

24

Authentication is the act of confirming that someone (or something) is who
they say they claim to be. The most common authentication that we do in our
applications is confirming that a user is in fact who they claim to be, and not an
imposter claiming to be someone they aren't. The ways in which someone may
be authenticated fall into three categories, based on what are known as the
factors of authentication: something you know, something you have, or
something you are. For information or functionality that requires a heightened
level of protection, two-factor authentication is common. This uses two of the
three factors during the authentication process. Many use a combination of
passcode and SecureID.

25

A we go through this class, for each security mechanism we will call out a set
of "words to live by". It must be noted that these lists are not intended to be
the "only" words to live by. Rather, they represent the most basic points and
many of them represent what we find lacking during our reviews of source
code. Given that we only have one day for this course, we have chosen to
focus on these few important points.

As a developer, there are four key things to focus on related to authentication.
First is to correctly enforce basic password security. In short, don't let your
users enter "123" as their password. Second, to guard against brute force
attacks on your login functionality, be sure to implement some sort of account
lockout after a set number of failed attempts. Third, pay attention to how the
forgotten password functionality is implemented. Getting this right is just as
important as getting your login functionality right. Finally, when web
applications need to pass sensitive data, always use and explicitly enforce the
POST method. We will now delve deeper into each of these.

26

The first of our words to live by related to authentication is "enforce basic
password security". This corresponds to CWE-521 titled "Weak Password
Requirements". This includes things like adequate password length,
enforcement of complex character combinations, password expiration, and
preventing reuse of previous passwords.

27

Even though this topic is engrained within the today’s culture and we all use
overly strong passwords … right? … as developers we need to protect our
applications from those that have not yet seen the light. Users continue to
ignore guidance and set passwords that are easy to remember - and hence
easy for an attacker to guess. In 2009 an 18 year old kid was able to guess
(albeit with the help of a password cracker) the password of a Twitter support
staff, giving the attacker access to Twitter's administrative control panel. From
there it was trivial to hijack any number of user accounts, including the account
of the President of the United States. What was the password? "happiness"
Only slightly better than "123"! This should never have been allowed by the
underlying code.

28

Every year we think that the weak password issue will go away as users
become more educated and aware of the problem. However, every year it
continues to be a major problem.

29

An organization may have the following corporate policy outlined on this slide.
As developers, this policy should be enforced in our code wherever passwords
are required. Our code should not allow our users to break corporate policy
and put our systems at risk.

Note that ideally there would be some communication in the application with a
shared corporate policy file so that if the policy changes the code itself doesn't
fall out of date.

30

The second of our words to live by is "implement an account lockout for failed
logins". This corresponds to CWE-307 titled "Improper Restriction of
Excessive Authentication Attempts". The goal here is to stop an attacker from
being able to run through a long list of usernames and passwords in an
attempt to brute force their way through.

31

In this real world example, the password cracker application was able to try a
large number of potential passwords since there was no limit on the number of
login attempts that could be made. Eventually, a valid password was
discovered.

32

Demo: Demonstrate high level reconnaissance of the account creation page
that leads to discovery of a valid email format (describe other ways this could
be gained from Google). Explain the Hydra tool and how it can be used to
process large password files against a defined list of users, running many
parallel tasks to speed up the process. Use the example in example.txt to
demonstrate it successfully popping the password on the application, and
demonstrate successfully logging into the site.

Discuss the lack of complex composition requirements being part of the
problem, combined with account lockout. Address the fact that lockout isn’t
enough – a ‘reverse brute force’ can still try one password against many
accounts.

33

In this example, notice that the validateUser() method will continuously check
for a valid username and password without any restriction on the number of
authentication attempts made. This is a classic example of CWE-307.

34

To fix this code, we need to add a MAX_ATTEMPTS check to the loop and fail
the validation if the maximum attempts is reached. Note that we still need to
make sure an attacker can't just call validate() many times. There needs to be
some type of lockout on the validate function after MAX_ATTEMPTS is
reached. Some possible implementations are:

- Disconnecting the user after a small number of failed attempts
- Implementing a timeout
- Locking out a targeted account
- Requiring a computational task on the user's part.

One other point to make here is that developers should attempt to use
established authentication routines when possible instead of creating their
own. An established routine will most likely have these security features built-
in and implemented correctly.

35

Of course it is not always as simple as following the previous secure coding
guidelines. In this example, eBay implemented password throttling to help
protect against a brute force attack on a user's login. After some number of
incorrect attempts the user's account would be locked for some set period of
time before it was enabled again. This is exactly what one would want to do in
most applications. However, in this instance, the account lockout feature
actually opened eBay up to another type of attack. Individuals involved in an
auction would wait until just before the auction was set to expire and then
purposely attempt to log into the current high bidder's account the set number
of times. Eventually that account would be locked and the individual would
submit a new high bid. The previous high bidder might want to respond with
another bid but would be unable to do so as their account is locked.

This example shows how security can be very complex and requires some
careful thinking before applying any given mechanism. Developers must work
closely with the design team in an attempt to make an application as secure as
possible.

36

The third words to live by say "'forgot my password' functionality can be a
problem". This corresponds to CWE-640 titled "Weak Password Recovery
Mechanism for Forgotten Password". In this case we are drawing attention to
the fact that developers often make mistakes in the logic behind this
functionality. All too often we see cases where an application allows someone
to change a password without asking for the original password first, thus
enabling an attacker to take over an existing account. Another issue is that the
strength of the recovery mechanism may not be as strong as the real
password, in short enabling a much simpler path into the application.

37

Demo: Demonstrate the choices for the account password reset available for
user perusal in the account creation process. Point out that the questions are
generally weak, because the answers often are from a small, finite list of
possible answers. Show the passwd-reset-teams.txt file, noting how easy it is
to put together a list of every available team of every major (and many minor)
sport (courtesy of Wikipedia). Note that the password reset process is
essentially just another “something you know” authentication challenge. Point
out that this method almost never has an account lockout after a number of
bad attempts. Given that this is just taking a user name and a security
challenge answer, we can use the same Hydra tool to brute-force our way
through this form as well.

Use the interface to provide the security answer, and show that the user can
now directly set the password. Observe that since the application has the
email address of the users, sending a one-time use password instead would
be a better design. This way the attacker would also have to compromise the
user’s email account in some manner to exploit the application. Note that the
application should NEVER email the current password (since it should not be
recoverable anyway, if stored correctly), but instead send a new strong
password that must be changed after one use.

38

Just a few years ago, this issue was at the center of an attack on Sarah Palin.
The hacker broke into her Yahoo! email account and then posted her email
archives for all to see. How did he accomplish this? Well, he took advantage
of a very weak password recovery mechanism. Yahoo! asked three questions
of each user when they signed up. The answers to these questions (instances
of "something you know") were used to authenticate a user is they happen to
forget the password they has selected. Unfortunately the answers to these
questions are not hard to find. The attacker easily got the first answer, got the
second answer after a few guesses, and arrived at third answer after entering
the name of the high school that Sarah and her husband attended: "Wasilla
High".

Even if a strong password had been chosen, utilizing all four types of character
complexity, an attacker only needs to know the answers to some simple
questions to gain access.

39

Even major vendors get this wrong. Apple had an embarrassing hole in their
password reset function that allowed an adversary to change a user’s
password and take control of their account. An adversary just needed to
“guess” easily obtainable answers. (e.g., date of birth) Note the change to two
factor authentication just as an exploit was released. We will talk about this
example again later in the class.

More information can be found at: http://www.imore.com/anatomy-apple-id-
password-reset-exploit

40

There are a few guidelines to follow when developing the “forgot my password”
functionality.

- Make sure any security question is hard to guess and hard to find the answer.
As an example, a question asking about someone's favorite color would be
easy to guess as there are only a handful of answers. Asking about their
hometown is something that a little internet searching would probably uncover.

- The system must only email the new password to the email account of the
user resetting their password.

- Assign a new temporary password rather than revealing the original
password and force the user to set a new one.

- Consider throttling the rate of password resets so that a legitimate user can
not be denied service by an attacker that tries to recover the password in a
rapid succession.

41

The fourth and final words to live by for the Authentication section is "for web
applications, use and enforce POST method". This corresponds to CWE-598
titled "Information Leak Through Query Strings in GET Request". GET
requests not only show information in the title bar of the browser, but they also
lead to potentially sensitive information being stored in logs. One thing to note
is that it’s not enough to just be explicit in your forms on the client (GET is
often the default if you don’t specify the POST method), but you must also
enforce in the server-side code to prevent mistakes and only allow POST
requests to be processed. (Don't just forward a GET request to the POST
handler.)

42

Demo – Perform a grep on the Apache logs to pull some of the GET method
examples of when passwords were sent to the server not using POST. It
should pull up multiple examples from prior testing. The browser should also
be able to be used to show an example of where it’s possible for a browser to
cache copies of requests along with their query string information, which can
result in an information disclosure.

43

In this example from 2008, the Watchguard's Fireware SSL-VPN Client was
found to use a GET request during the connection process which unfortunately
included the username and password. This means that both the username
and password were stored in the webserver logs thereby exposing them to any
admin of the system, or an attacker that was able to exploit some other
vulnerability on the server in order to read the log. This problem became a big
issue when it was discovered that a poor job of authentication was being done
(the client didn't fully check the server certificate), enabling an attacker to
impersonate the server. The fake server would receive real requests from
clients that contained their real credentials. Since the credentials were sent
using a GET request and is in the URL received by the attacker's fake server,
the URL (and hence the credentials) were now in the logs that the attacker can
read.

http://christophe.vandeplas.com/2009/08/watchguard-fireware-ssl-vpn_02.html

44

The above code forwards the GET request on to the doPost() handler. Even
though the current client front end may not make a GET request, the door is
now open for a future client or a custom client interacting with the server. If the
page is dealing with information that shouldn't be leaked, then don't even allow
for the possibility.

45

To correct the previous code, throw an exception if a GET request is received.
Do not even allow a GET request to be processed.

Technically, in this case the server will still log the GET request. But future
developers that may try to build a client will not have success sending GET
requests and will be forced to use a POST request to communicate to the
server. As application devels, there isn't much we can do to stop a request
from being sent, but we can make sure that our apps don't work when bad
requests are sent and thus keep developers from using those flawed
mechanisms.

46

47

Authorization is the act of verifying that a previously authenticated user is
allowed to perform a given operation or act on a given resource, and is often
known as access control. There are actually two things going on here. The
first is a check to verify that the user is allowed to visit a section of the
application or perform a certain function. For example, is the user allowed to
delete records? Maybe this is only reserved for administrators? The second is
a check to verify that the user is allowed to work within the specified context.
For example, after verifying that the user is allowed to use the delete record
functionality, we then need to verify that the user is allowed to delete the
specific record in question.

48

There are three words to live by related to authorization that we as developers
must keep in mind. The first is to verify that the user is allowed to access the
requested page or function. The second is to verify that the user can operate
within the given context. For example, can the user read everyone's mail or
just their own? And finally, related specifically to client-server applications, we
must make sure that any authorization check is done on the server as client
side security can often be bypassed.

49

The first of our words to live by in the area of Authorization is "every function
(page) must verify authorization to access". This corresponds to CWE-425
titled "Direct Request ('Forced Browsing')". Applications are often susceptible
to direct request attacks when a false assumption is made that resources can
only be reached through a given navigation path and developers only applied
authorization at to the start of that path. Any alternative paths that exist would
bypass the authorization check put in place.

50

Demo – Should have previously demonstrated the basic functionality of the
site while logged in as our ‘popped’ account. Demonstration of the various
status views can be performed. Click the logout button to remove the
credentials and then show that the ‘status’ button no longer lets you get access
to that functionality without logging in. Then show bringing up the browser
history with control-shift-H, and drilling into the recent URLs. Demonstrate that
by going directly to the actual dostatus.cgi without using the form frontend, the
CGI isn’t verifying the user’s authorization to the page/function.

51

In this example, CuteFlow, which is a document workflow tracker, was
supposed to verify a user's access to certain pages before granting permission
to use the functionality on the page. Here, an attacker is trying to gain access
to the edituser functionality. Under normal conditions, the user would first
browse to edituser.php where he would be authorized before being redirected
to the actual edituser functionality. Unfortunately, this authorization check
could be bypassed by supplying the userid in the URL. Upon seeing the
userid in the URL, the edituser script then assumed authorization had already
been performed and proceeded to perform the specified function.

By directly editing this URL, an attacker could easily edit any user's information
including their username and password. This included the admin user which
more often than not is assigned a userid of 1.

52

The second words to live by is "every function (page) must verify access
context". This corresponds to CWE-639 titled "Access Control Bypass
Through User-Controlled Key". The example most commonly seen is an
attacker changing the web address that contains an id of a resource, and the
altered request being processed by the server without verifying authorization,
resulting in access to the resource being granted.

53

Demo – Log into the application with our compromised jdoe@iss.org
credential. Click to view a report, and then simply change the number in the
querystring / URL in the browser bar. Show that this provides access to a
report that the user did not originally have access to.

54

In this real world example, the user was allowed to modify the document id in
the URL and pull up financial statements for other people. If a predictable
structure to the filename is used, it only takes minutes to create a script
capable of retrieving all of the statements/reports on the site!

55

While the program properly exits if authorization fails, it does not ensure that
the message is addressed to the user. As a result, a user authorized to look at
messages could provide any arbitrary identifier and read private messages
that were intended for other users. One way to avoid this problem would be to
ensure that the "to" field in the message object matches the username of the
authenticated user.

56

To correct the code, the message being requested is added to the
authorization request. Verification is now made that the user is authorized to
retrieve the message being requested.

57

The final words to live by for Authorization is "any client/server application must
verify security on the server". This corresponds to CWE-602 titled "Client-Side
Enforcement of Server-Side Security". An attacker can modify the client-side
behavior to bypass the protection mechanisms. Note that this is also important
with input validation, make sure the input is validated on the server and not on
the client as an attacker can bypass any client side validation.

58

Demo - Using a debug proxy like Tamper Data is an easy way to see the
requests coming from a client and modifying those requests before they reach
the server. This demo show why a client cannot be trusted to make security
decisions.

59

In 2009 it was discovered that PayPal was not validating the price on the
server. So an attacker could modify the data being sent from the client and
name their own price. There are many tools out there that enable an HTTP
request to be caught and altered before being delivered to the server.

60

The client performs the authentication/authorization first and then only sends a
CHANGE-ADDRESS for that user if the authentication succeeds. Because the
client has already performed the authentication, the server assumes that the
username in the CHANGE-ADDRESS is the same as the authenticated user.
An attacker could modify the client by removing the code that sends the
"AUTH" command and simply executing the CHANGE-ADDRESS.

61

In this fixed example, the authorization is done on the server as part of
handling the CHANGE-ADDRESS request. The client does not have the
ability to request this functionality separately.

62

63

Any client / server or web application that wants to keep track of state, must
perform some type of session management. In other words, in order to keep
track of a user's place in a multi-stage process (e.g., a workflow), certain
information must be passed in order to know where in the process the user
currently is. Often, data collected at one point in the workflow is used to make
decisions at another point. Therefore this data needs to be tracked throughout
the process.

A simple example of this is authentication. Many client / server applications
require a user to authenticate (log in) as the first step. The authentication
information from step 1 is used to determine if the request for step 2 or step 3
is allowed. If the authentication state was not saved, then the user would have
to log in with each request. Can you imagine the user's response if they had to
enter their username and password every time they clicked a link in their
online banking application? They would end up driving to the bank!!

Keeping track of this information related to a particular user can be
accomplished a number of different ways. For example, the client application
could store all the information provided and send it with each request made to
the server. Another option would be for the client and server to agree on a
unique "session ID" and for the server to store the information along with that

64

There are three words to live by related to session management that we as
developers must keep in mind. The first is to enforce a reasonable session
lifespan so that if a session is compromised there is at least a limit to how long
it can be exploited. (Hopefully it is compromised after it expires!) The second
is to leverage existing session management solutions and avoid rolling your
own. Finally, to avoid session fixation attacks, force a change of session ID
after a successful login.

65

The first words to live by focuses on session expiration. A session that "lives"
for a long time give an attacker either a long time to try and discover the
session identifier, or gives them a long time to work within the session once the
identifier has been discovered.

66

Demo – Discuss how Firesheep works, but explain we won’t be doing a demo
on that part because we’re not using an unsecured wireless network here.
Discuss that the session could be compromised in other ways on the network,
from PCAP logs, from application vulnerabilities like cross-site scripting, etc.
The key is that a session can potentially become known to someone else, and
when that happens the main objective is to limit the lifetime of usefulness to
the attacker.

Show that placing the session ID value into the cookies.txt file in the l33t/
session folder, and then running the keepalive.pl script will keep making valid
requests… thus the inactivity timeout that is usually in place in many
application servers will never be reached.

67

Note that the first article discusses the release of the tools that allow easier
harvesting of session ID cookies that could be used to compromise sites like
MySpace & Facebook. The article goes on to talk about Gmail also having the
same vulnerability as well, and as can be seen people have raised the issue
about a lack of session timeout around Gmail, even very recently. Mention
that as a user – you can help protect yourself by remembering to use the
‘logout’ function on a site when you’re done using it, don’t just close the
browser window.

click to build slide Point out that although FireSheep got a lot of press in the
security news last year because it made it *so* easy for the script kiddie level
attackers, over 3 years ago, people had already started releasing tools to
exploit this weakness.

68

As a general rule, sessions should timeout after 30 minutes of inactivity. In
addition, after 12 hours the user should be asked to log in again. THe hard
timeout is important since after a full day, most people need to go to sleep and
a session that continues to be "active" is a sign that it has been potentially
broken.

Note that most application servers implement an inactivity timeout, but very
few provide a hard timeout option. This may be something that you as a
developer needs to encode in you application.

69

The second words to live by deals with leveraging existing session
management solutions. Session management is complex and there are many
opportunities to make mistakes. A lot of time has been put into existing
solutions, and it is often better to leverage these solutions rather than build
your own.

70

Demo is a quick example of both strong and a weak session passing
techniques in the application.

71

We discuss the vulnerability in the Java WebServer, including the application
server used by IBM WebSphere. Even though the string looks very random at
first glance… it doesn’t hold up to more scrutiny. Walk through the flow of “get
one session at 12:00:00, get another at 12:00:05”. Notice that the session
count went from 10 to 12. That means someone else got a session
somewhere between 12:00:00 and 12:00:05. Just replay all those static
values and try 6 times… one for each second that the session *might* have
been created in. This can be done in mere moments via automation.

72

Revisit the previous example on Apple iForgot and talk about how they tried to
pass all the data … but didn’t.

http://www.theverge.com/2013/3/22/4136242/major-security-hole-allows-apple-
id-passwords-reset-with-email-date-of-birth

http://www.imore.com/anatomy-apple-id-password-reset-exploit

73

74

75

Demo – Show that when we first connect to the site, we are issued a
CGISESSID value. After we successfully login, it’s still using the same session
value. This means we know the site is vulnerable to a fixation attack, where
an attacker can attempt to set the session of another user. Remember, if the
attacker has the ‘something you have’ authentication item… they’re going to be
the same as the person who has authenticated using that ID. To demonstrate,
take the session ID out of the Tamper Data window, and going to the ~/l33t/
session folder, run the ./fix-email script passing the “CGISESSID=….” as a
command line parameter. This will send a specially crafted email to the demo
user we’re using. Bring up the email tool, and show the email. By clicking the
link to the website, it’s *really* the InSQR site, and it’s *really* the real login
page with no other code. But the attacker has passed the session ID to use to
the webserver in the querystring. The server trusts this as being the person’s
session ID, and in fact, updates & sets a cookie for the user to contain that
session ID going forward. When the victim logs in, they have now
authenticated that session ID.

The attacker can now use that same session ID, still sitting at the login
screen…just click ‘Reports’ and you’re good to go!

76

Even big applications include simple issues.

77

78

79

80

Data validation is considered by many to be the most important mechanism in
secure coding. Proper data validation will stop most exploits as it is through
manipulating input that an attacker often launches an attack. It is important to
remember though that ALL data validation must be done on the server since
an attacker can bypass a client and send requests directly to a server
application. One can not assume that input received from a request has been
validated by client code.

81

There are four words to live by for Data Validation. These align to the four big
vulnerabilities that we see today: SQL injection, cross-site scripting, command
injection, and buffer overflows.

82

83

84

85

86

87

Demo a very simple SQL Injection vector via the login page. The attack will
inject the userid field, causing the SQL statement to return all users from the
user table back to the command. The program just reads the first line returned
from the DB, not checking if there was more than one match, and assumes the
user must have logged in successfully (user & password provided must have
matched).

Explain that this is an extremely simple case to illustrate the coding weakness.
There are much more sophisticated versions of this attack, leveraging UNION
statements to map table structure and return additional information as well as
Blind SQL Injection to return information from the DB even when the query
might never normally return any data to the client.

88

Note that even a very basic validation ensuring that number was supplied
would have worked here. If you look at the two parameters (pageNav and
page) both appear to be only numeric.

89

To properly protect our code from SQL injection, we should take a defense-in-
depth approach. First, we should perform some basic validation related to the
type of information we expect. In this case we are working with a username. It
is probably safe to assume that a username should be less than 100
characters long, so we should verify that input conforms to this. Next we
should use a whitelist if possible to restrict the input to a set of valid
characters. For most of us, all our usernames are just characters so maybe it
is correct to only allow characters in our input string. Finally, we should use
prepared statements instead of directly concatenating the input with the SQL
query. Using prepared statements automatically enforces that a data field will
be just a data field and will not allow an attacker to single-tic their way out of
the field and inject additional commands.

Note that escaping the single tic would be a start, but this might not be
enough. This is in a form of blacklisting where we try to exclude certain
characters. The problem is that different character encodings may be possible
that could pass the blacklist but still be interpreted as a single tic. For
example, x027 is the hex value for the single tic.

90

91

Persistent XSS vs. Reflected XSS

Persistent = a malicious site or a malicious post, get user to visit the site

Reflected = find a vulnerable site that "reflects back" the values in the URL,
send the code as part of the phishing URL and get the user to click the link, the
"trusted" server reflects back the code that is then rendered/run in the user's
browser.

92

93

94

Demo a simple XSS attack. This can either be done directly from the login
page userid field or can be done leveraging the Tamper Data interface. Pop a
simple alert window to demonstrate how the data provided as input is being
interpreted by the browser as code from the server.

Discuss how the actual attack will be much worse in reality. Low-end
hacktivists & script kiddies might settle for apparent site defacement or
misleading data being provided on the page. Cyber criminals can use the
attack to provide misleading information (bogus AV software alerts for
example). Some cyber criminals and advanced threats may leverage this
weakness to steal/harvest session identifiers for your site or to cause a cross-
site request forgery (CSRF).

95

96

97

A XSS vulnerabilities was identified in the Google.com website, which allowed
an attacker to mount a phishing attack. Although Google uses common XSS
countermeasures, a successful attack is possible, when using UTF-7 encoded
payloads.

The script (http://www.google.com/url?q=...) is normally used for redirecting the
browser from Google's website to other sites. When requesting a page which
doesn't exist under www.google.com, a 404 NOT FOUND response is returned
to the user, with the original path requested. While the aforementioned
mechanisms (URL redirection script, 404 NOT FOUND) escape common
characters used for XSS, such as <> (triangular parenthesis) and apostrophes,
it fails to handle hazardous UTF-7 encoded payloads.

The server response lacks charset encoding enforcement, such as: Response
headers: "Content-Type: text/html; charset=[encoding]". Therefore, when
sending an XSS attack payload, encoded in UTF-7, the payload will return in
the response without being altered.

If "Encoding" is set to "Auto-Select", and Internet-Explorer finds a UTF-7 string
in the first 4096 characters of the response's body, it will set the charset

98

99

100

101

Demo – Show looking at the status functionality in the site. Show an attempt
to ‘fuzz’ the ‘check’ name/value pair using TamperData. Use a string like ‘”<>;:
%. The error message returned gives the hint that this is an eval statement
that caused the error. Mention that at this point it’s just trial and error until you
perfect your payload. Cut & paste over a prepared malicious payload from the
eval-attack.txt file. The first one is f.cgi which will allow command execution
via the “c” name/value pair. The second is d.cgi which also uses the “c” name/
value pair to execute DB commands in the application database. Using the
f.cgi, you can do a ls –l, show finding the authenticate.cgi source, then using
that to identify the file that the DB connection information is coming from along
with the ID & password. Then upload the 2nd file to take advantage of that to
gain full access to the DB.

102

Perl backtick runs a command and returns the command's output (stdout). For
example … print `perl -le "print -t STDOUT"`… This prints the output of the
command … perl -le "print -t STDOUT" … This is very similar to the perl
system() function, however system() returns a status code, not stdout.

From http://twiki.org/cgi-bin/view/Codev/SecurityAlert-CVE-2008-5305 …

The %SEARCH{}% TWiki variable or a specially crafted GET URL enables a
malicious user to compose a command line executed by the Perl backtick (``)
operator. User input is passed to the perl "eval" command without first being
sanitized.

If access to TWiki is not restricted by other means, attackers can use the
SEARCH variable with or without prior authentication, depending on the
configuration.

Proof of concept:

Enter the following in the search box:

103

104

105

106

107

Issues in old code still being discovered. Released announcement on Full
Disclosure mailing list on 2/14/11, about a new zero-day in Windows Server
2003 and XP SP3.

108

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation
strategy, i.e., use a whitelist of acceptable inputs that strictly conform to
specifications. Reject any input that does not strictly conform to specifications,
or transform it into something that does. Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). However,
blacklists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

When performing input validation, consider all potentially relevant properties,
including length, type of input, the full range of acceptable values, missing or
extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."

109

110

111

112

113

These are examples we’ve already seen as we’ve been working through the
site. The first provides names & account name combinations, and talks about
upcoming changes to the code…why do the users need to see this?
The second example shows a bad userid vs. a bad password. This can be
used to harvest possible userid values.
Third example – Just the concept of confirming valid server, files, and db
connections to a normal user of an application is rather strange. Users don’t
need to know that kind of operational detail, and providing it to users just
makes an attacker’s job easier to understand what impact his attacks might be
having.
Final example – returning a coding related error message (see also – stack
traces in Java & such) to the browser/user.

114

This is an example of a real error page posted on the web from a IIS /
MS .NET application. Large amounts of information leakage are shown here.
The example shows information about DB table structure (notably the account
table), includes a source code snippet which helpfully shows that the site is
likely vulnerable to SQL Injection, shows the application as being installed on
the C: drive in the default location which will be helpful if successful in
attacking the application, and includes version numbers of the server install of
the .NET framework & ASP.NET software. This is really useful for a developer
during debugging… but a field day for a malicious attacker.

115

116

117

Minimum Balance – This is a business logic decision, not a security one.
Telling people exactly what qualifies them to be able to partake in various
business functions or options is not an information leakage problem.

Password length – This is not an information leak issue, though this can
depend somewhat on where in the application this is provided and under what
circumstances. The password length requirement must be told to users during
the account creation process. Likely valid to report to users via client side
checking in a web application to prevent a typo causing an invalid login for a
user. However, it would need to be verified that the password error handling
on the server wasn’t causing different errors in the case of an invalid login vs.
invalid password on the server from this message.

DV fail requirements – not an information leak. An attacker is already going to
be able to harvest this information via brute-force methods… why irritate/annoy
legitimate users who are trying to do the right thing with a cryptic error that
doesn’t help them use your application successfully?

118

119

Demo -

120

121

122

123

124

Logging is important as it can provide information that will help an admin
determine what was going on when a problem arose so that they can
troubleshoot the problem. This is especially true when there is a security
breach and someone needs to determine what happened and what resources
an attacker might have had access to. It is advisable to log not just error
conditions, but also the occurrence of security related events like login failures.
However, we must be careful what we log as an attacker must not have the
ability to manipulate the logs and alter the history that they are describing.

125

There are four "words to live by" related to logging. 1) Avoid logging sensitive
data as attackers that have gained access to a system through some other
vulnerability may gain access to logs and could potentially see this information.
2) Beware of logging tainted data as this data may be constructed to execute
unexpected code under certain conditions. 3) Beware of logging excessive
data that might fill up a log and stop logging of future actions. 4) Finally,
beware of potential log spoofing that may allow an attacker to cover their
tracks.

126

The first word to live by is "Avoid logging sensitive data" which is captured via
CWE-532 (Information Leak Through Log Files). Even if your application is
well developed and does not contain any vulnerabilities, it will most likely be
installed on a system with other applications. If any of these other applications
have a vulnerability that allows an attacker to gain elevated privileges, then the
attacker may gain access to your log files. If sensitive information like
passwords, social security numbers, or credit card numbers are saved in log
files (which usually are stored unencrypted), then the attacker will be able to
see it.

127

Demo: Run the command: grep "incorrect password" /tmp/accesslog.log

This will show how log statements with too much information can help an
attacker.

128

If an attacker can gain access to the system, then they can read this log and
learn the password. Maybe MediaPortal isn't a critical system, but if a user is
reusing their password on some other system then the attacker has just
obtained credentials for that system.

129

This is especially true if the log file is unencrypted.

130

Interpretation of the log files may be hindered or misdirected if an attacker can
supply data to the application that is subsequently logged verbatim. In the
most benign case, an attacker may be able to insert false entries into the log
file by providing the application with input that includes appropriate characters.
Forged or otherwise corrupted log files can be used to cover an attacker's
tracks, possibly by skewing statistics, or even to implicate another party in the
commission of a malicious act. If the log file is processed automatically, the
attacker can render the file unusable by corrupting the format of the file or
injecting unexpected characters. An attacker may inject code or other
commands into the log file and take advantage of a vulnerability in the log
processing utility.

131

132

133

Once we know what the log format might look like… which we can use our
eval injection exploit to determine… we can leverage the fact that the userid
field is not being safely encoded before being written to the logfile. In the l33t/
logs folder is an example string we can use to craft some bogus log entries.
Before running the attack, bring up an xterm and use “tail –f /tmp/
accesslog.log” to monitor the end of the logs. Run the attack, and then show
how the new entries were spoofed.

134

135

We really should encode any character that doesn't satisfy a white list.

136

137

First - Don't roll your own.

Second - We need to decide whether we are just worried about data integrity
(hash) or whether we need to recover the data at the other end (encryption).
By hashing, we can assure that the data hasn't been altered, but we won't be
able to figure out what the data is.

Third - if we want to go with encryption, we need to choose a certain cipher.
We need to either read each bit or read blocks at a time. Usually you want a
block cipher. If you don't know what you need, then you should ask someone
who does.

Fourth - Once we decide to use a block cipher, we need to decide what type of
key to use. Symmetric means that the encryption and decryption key is the
same. You need to guard this key and can't just give it out to everyone. With
Asymmetric, there is one key to encrypt and a different key to decrypt. This
allows you to give out the decryption key. One can now enable anyone to
verify that the person that sent something is the one that actually sent it.

138

A striking example of the degree to which ECB can leave plaintext data
patterns in the ciphertext can be seen when ECB mode is used to encrypt a
bitmap image which uses large areas of uniform color. In ECB mode, the
message is divided into blocks and each block is encrypted separately using
the same key. While the color of each individual pixel is encrypted, the overall
image may still be discerned as the pattern of identically colored pixels in the
original remains in the encrypted version.

139

140

141

Demo – cd into the l33t/encryption/john folder. cd into the run folder. Show
the “tocrack.txt” file that we’ve pulled from the DB using the exploits we
demonstrated earlier to get access to the user table. Explain that the format of
the passwords being an MD5 hash is a pretty intuitive guess based on its
length (32 hex bytes – 16 bytes of data – 128 bits. MD5 is best known hash
with an output of 128 bits). Then fire up the application using “./john –
format=raw-MD5 tocrack.txt”. It should rather quickly pop 3 accounts, you can
stop it at this point.

Point out that obviously just hashing wasn’t enough. Point out that salting also
wouldn’t save these users with really bad passwords from themselves. This
program is brute-forcing, however if we precompute these values, creating a
rainbow table the process can go even faster. Salts help to mitigate some of
the rainbow table risk by requiring multiple rainbow tables to be pre-generated
for every possible salt that might be present in the database.

142

Advances in technology continue to make cracking passwords easier.

143

144

145

146

Demo – cd into the l33t/encryption/pcap folder, run the commands in the
example-string file. This will mount a Shared drive location between the VM &
the hosting OS, then start a packet capture of the loopback network interface.
Bring the browser forward and use it to go to the site, login, read a report, etc.
Hit control-C to stop the packet capture. Open the “Netwitness” application on
the hosting OS and import the packet capture file from the Shared drive
location. Demonstrate how the tool has captured all of the information,
including the userids, passwords, etc. Show how all of the request & response
information is captured, and the tool can even preview what the HTML would
have looked like to the users of the real session.

Point out that this can capture initial passwords. Some sites encrypt *just* the
login submission but nothing else. Point out that this could then capture the
session ID and allow anyone to become this user (similar to the Firesheep
plug-in mentioned in an earlier demo). Finally, note that the data itself which is
rather sensitive, can also be fully captured.

147

148

http://arstechnica.com/security/2014/10/ssl-broken-again-in-poodle-attack/

https://www.openssl.org/~bodo/ssl-poodle.pdf

149

The third of our words to live by is "properly seed random number generators".
This corresponds to CWE-330 titled "Use of Insufficiently Random Values". As
developers, we often find ourselves needed a random number. There are
many options available to us and choosing an incorrect option can leave our
application vulnerable to an attack.

150

Random numbers are needed in many different types of applications.
Cryptography is first type that comes to mind. The block ciphers that we talked
about in a previous section rely on random numbers for their symmetric keys
and for the initialization vectors used to encrypt the first block. Session ids also
rely on random number to make sure that an attacker can't guess a valid id
and hijack a session. Games focused on gambling, and statistical sampling
also leverage random number generation to operate correctly. Finally, a
random number is needed to seed a Pseudo Random Number Generator. This
is a bit of chicken and the egg problem that we will touch on in a few slides.

151

Payment cards contain a chip so they can execute an authentication protocol.
This protocol requires point-of-sale (POS) terminals or ATMs to generate a
nonce, called the “unpredictable number” (UN), for each transaction to ensure
it is fresh. If attackers can predict what "unpredictable number" (UN) a
particular model of ATM or point of sale (PoS) terminal will generate at a future
point in time, they can force genuine cards to compute an Authorization
Request Cryptogram (ARQC) for a transaction with a future date and then use
that ARQC with rogue chip cards. Researchers have discovered that some
EMV (Europay, MasterCard and Visa standard) implementers have merely
used counters, timestamps or home-grown algorithms to supply this number.
This exposes them to a "pre-play" attack.

In one scenario, for example, a customer goes into a coffee shop that happens
to be controlled by a criminal gang and which uses payment terminals with
maliciously modified firmware. The customer would insert his payment card
into one of the rogue terminals in order to pay for his coffee. The card uses a
secret encryption key that is securely stored on its chip to compute an
authorization request cryptogram (ARQC) from the transaction data and the
UN provided by the PoS. The terminal would process the current transaction
and, in addition to initiating the legitimate payment, would force the card to

152

As developers, we need to focus on two things when we attempt to generate a
random number. 1) Use a strong Pseudo Random Number Generator (PRNG)
that does not produce predictable output. An attacker that has access to past
values, must not be able to guess what the next value will be. 2) Seed the
PRNG with a random value and make sure that the seed is different each time
the generator is initiated. This will prevent the PRNG from generating an
identical sequence of random number which would violate point #1 above.

For those that use Java, the library Java.Security.SecureRandom is
recommended as the underlying SHA1PRNG generator have been proved to
be sound. It also self-seeds itself using /dev/urandom.

153

154

155

156

157

158

159

