intel)

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Volume 2 (2A, 2B & 2C):
Instruction Set Reference, A-Z

NOTE: The Intel 64 and IA-32 Architectures Software Developer’s Manual
consists of three volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-Z, Order Number 325383; System
Programming Guide, Order Number 325384. Refer to all three volumes
when evaluating your design needs.

Order Number: 325383-043US
May 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING
OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARIS-
ING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUB-
CONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software
to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For
availability, consult your reseller or system manufacturer. For more information, see http://software.in-
tel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors.
Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary
depending on the specific hardware and software used. For more information including details on which
processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and
virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hard-
ware and software configurations. Software applications may not be compatible with all operating systems.
Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Per-
formance will vary depending on the specific hardware and software you use. Consult your PC manufacturer
for more information. For more information, visit http://www.intel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core
2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation. All rights reserved.

i Vol.2A

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CONTENTS

PAGE

CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL.\ 1-1
1.2 OVERVIEW OF VOLUME 2A, 2B AND 2C: INSTRUCTION SET REFERENCE............... 1-3
13 NOTATIONAL CONVENTIONS ..ottt e 1-4
1.3.1 Bitand Byte Order. ..o e 1-4
1.3.2 Reserved Bits and Software Compatibility................coooiiiiiiiiiiinns 1-5
133 TSy W o o I 0= = o 3 1-6
134 Hexadecimal and Binary NUMbDErs. e 1-6
135 Segmented AddreSSiNg. ... v et 1-6
136 EXCEPTIONS &ttt e 1-7
137 A New Syntax for CPUID, CR,and MSR Valuesccovviiiiiiiiiiiineaenns. 1-7
14 RELATED LITERATURE . . ottt et 1-8
CHAPTER 2
INSTRUCTION FORMAT
2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND

VIRTUAL-8086 MODE 2-1
2.1.1 INStrUCHION PrefiXes . ..ot 2-1
2.1.2] ol 0 L= 2-3
213 MOdR/M and SIB BYteS v ittt e 2-4
214 Displacement and Immediate Bytescovviiiii i 2-4
215 Addressing-Mode Encoding of ModR/Mand SIBBytes..........c.ovvviniinininnn. 2-4
2.2 A-32E MODE ..\ttt e e 2-9
2.2.1 REX PrefiXES ottt 2-9
2.2.1.1 = ol a1 2-10
2.2.1.2 More on REX Prefix Fieldsovvve e 2-10
2213 Y] =Tl =T 3= 2-13
2214 Direct Memory-Offset MOVS. ..o i i e 2-13
2215 IMMEdIateS ot e 2-14
2.2.1.6 RIP-Relative Addressing.ovvviii it i 2-14
2.2.1.7 Default 64-Bit Operand Size.oii i e 2-15
2.2.2 Additional Encodings for Control and Debug Registerscovvvvvnn.. 2-15
2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX) .o vvvvieieiiiee i 2-16
231 INSTrUCHION FOMMAtot 2-16
232 VEX and the LOCK prefiXovvvvree e 2-17
233 VEX and the 66H, F2H, and F3H prefixes. ... 2-17
234 VEX and the REX prefiXovvuii i i 2-17
235 THE VX PrefiX ottt e 2-17
2351 VEX BYLE 0, DitS[7:0]. o v oottt 2-20
2352 VEXBYte 1, bit [7] - R e 2-20
2353 3-byte VEX byte 1, bit[B] - X\ oo 2-20
2354 3-byte VEX byte 1, bit[5] - Bt 2-20

Vol. 2A i

CONTENTS

PAGE
2355 3-byte VEX byte 2, Dit[7] - W oo 2-20
2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv' the Source or
dest Register SpeCifier.vvv i e 2-21
236 Instruction Operand Encoding and VEX.vwvv, MOdR/M.cooviiiiiiiinnt, 2-22
2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”. ... 2-23
23.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]-“L"........covvvvntt 2-24
2.36.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”........... 2-24
23.7 The OpCOde BYte ..ottt e 2-25
238 The MODRM, SIB, and Displacement Bytes.........covviiiiiiiiiiiiiiiinnnnnns 2-25
239 The Third Source Operand (Immediate Byte). ..., 2-25
2.3.10 AVX Instructions and the Upper 128-bits of YMM registers 2-25
2.3.10.1 Vector Length Transition and Programming Considerations 2-25
23.11 AVX Instruction Lengtho 2-26
2.4 INSTRUCTION EXCEPTION SPECIFICATIONot 2-26
24.1 Exceptions Type 1 (Aligned memory reference)ccoovvviviviiiiiiiiinnnns 2-31
24.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned) 2-32
243 Exceptions Type 3 (<16 Byte memory argument).ovvviviiiiiinnenannns 2-33
244 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point
EXCEP T ONS) vttt ettt e 2-34
245 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions).................... 2-35
246 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues).. .. 2-36
247 Exceptions Type 7 (No FP exceptions, NO MeMOrY arg).evvvuernernenaenns 2-37
248 Exceptions Type 8 (AVX and no memory argument)cvvvvivvnennnnnnen. 2-38
CHAPTER 3
INSTRUCTION SET REFERENCE, A-L
3.1 INTERPRETING THE INSTRUCTION REFERENCEPAGES ..o 3-1
3.1.1 INSTrUCHION FOMMAt . ..o e e 3-1
3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX
0115 1 3-2
3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions with VEX prefix) 3-4
3.1.1.3 Instruction Column in the Opcode Summary Tablecccovviinnnt 3-6
3.1.14 Operand Encoding Column in the Instruction Summary Table 3-9
3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table 3-10
3.1.16 CPUID Support Column in the Instruction Summary Table...................... 3-11
3.1.1.7 Description Column in the Instruction Summary Table......................... 3-11
3.1.1.8 DesCription SECHION ..o\t 3-11
3.1.19 Operation SECHION. ...\ttt 3-11
3.1.1.10 Intel® C/C++ Compiler Intrinsics Equivalents Section.............coovviiiininnn 3-15
3.1.1.11 Flags Affected SECtioN vv i 3-18
3.1.1.12 FPU Flags Affected Section...........coiuiiiii e 3-18
3.1.1.13 Protected Mode Exceptions SeCtion.ovviiii it 3-19
3.1.1.14 Real-Address Mode Exceptions Sectioncviiiiiii i 3-20
3.1.1.15 Virtual-8086 Mode Exceptions Section.o.vvvviiiiii it 3-20
3.1.1.16 Floating-Point Exceptions Section.ot 3-20
3.1.1.17 SIMD Floating-Point Exceptions Sectioncoviiiiiiiii i 3-21
3.1.1.18 Compatibility Mode Exceptions SECtion.ccoov i 3-21

iv Vol. 2A

CONTENTS

PAGE

3.1.1.19 64-Bit Mode EXceptions SECiON.vviu i e 3-21
3.2 INSTRUCTIONS (AL e ettt et e e e e e eens 3-22
AAA—ASCII Adjust After Additionvvrvei e 3-23
AAD—ASCII Adjust AX Before DiviSionovveiiiii e 3-25
AAM—ASCIl Adjust AX After MUIEIPIY . ..o 3-27
AAS—ASCII Adjust AL After Subtractioncooviii i 3-29
ADC—Add With Carmy .. oot e et 3-31
ADD—AA. . .ttt 3-35
ADDPD—Add Packed Double-Precision Floating-Point Values...................... 3-38
ADDPS—Add Packed Single-Precision Floating-Point Values....................... 3-40
ADDSD—Add Scalar Double-Precision Floating-Point Values....................... 3-42
ADDSS—Add Scalar Single-Precision Floating-Point Values........................ 3-44
ADDSUBPD—Packed Double-FP Add/Subtract..........cvvvviiviiiiiiniiniann, 3-46
ADDSUBPS—Packed Single-FP Add/Subtract...........cocoiiiiiiiiiiiiiinans 3-49
AESDEC—Perform One Round of an AES Decryption Flow.covvvvnns 3-52
AESDECLAST—Perform Last Round of an AES Decryption Flow 3-54
AESENC—Perform One Round of an AES Encryption Flow......................... 3-56
AESENCLAST—Perform Last Round of an AES Encryption Flow 3-58
AESIMC—Perform the AES InvMixColumn Transformation......................... 3-60
AESKEYGENASSIST—AES Round Key Generation AsSist.oovvvivivenininnnnn, 3-62
AND—LOGICAI AND . ..ottt e 3-64

ANDPD—BiItwise Logical AND of Packed Double-Precision Floating-Point Values ...3-67
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values3-69
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point

ValUBS et e 3-71
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point

ValUBS e 3-73
ARPL—Adjust RPL Field of Segment Selectorcoviiiiiiiiiiiiien.. 3-75
BLENDPD — Blend Packed Double Precision Floating-Point Values................. 3-78
BLENDPS — Blend Packed Single Precision Floating-Point Values.................. 3-80
BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values....... 3-83
BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values........ 3-86
BOUND—Check Array Index Against Boundsoovviiiiiiiiiininininnns 3-89
BSF—Bit SCan FOrWardvv e e 3-92
BSR—BIt SCaN REVEISE ...t e 3-95
BS W AP —BY e SWaD . ottt e 3-98
o = T 1= 3-100
BTC—Bit Test and Complementovvuiiiii i i naas 3-103
BTR—Bit Test and ReSet. vviii e e 3-106
BTS—Bit Test and Set .. .ttt e 3-109
CALL—Call ProCedure . . .o e e e 3-112
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert
Doubleword 10 QUadWOI.o ettt et 3-131
CLC—Clear Carmy Flagv v ettt e e 3-133
CLD—Clear Direction FIagvvvvte e 3-134
CLFLUSH—FIush Cache Line. . ..o vv et 3-135
CLI —Clear Interrupt FIag.o vt e 3-137

Vol.2A v

CONTENTS

vi Vol.2A

PAGE
CLTS—Clear Task-Switched FIaginCRO ...t 3-140
CMC—Complement Carry FIag.ovvi i 3-142
CMOVec—Conditional MOVE v 3-143
CMP—Compare TWO Operands.uvrvenirni e eieenenes 3-150
CMPPD—Compare Packed Double-Precision Floating-Point Values 3-153
CMPPS—Compare Packed Single-Precision Floating-Point Values. 3-163
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands 3-170
CMPSD—Compare Scalar Double-Precision Floating-Point Values................. 3-176
CMPSS—Compare Scalar Single-Precision Floating-Point Values 3-182
CMPXCHG—Compare and EXChangeovvvvii i 3-188
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes..................... 3-191
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and
St B LA G S . ottt 3-194
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and
SOt B L AGS . .ttt 3-196
CPUID—CPU Identification vv v vt 3-198
CRC32 — Accumulate CRC32 ValUue ..o 3-237
CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP
ValUBS. et 3-241
CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP
ValUBS. e 3-244
CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword
1) (=T 1] 3 3-246
CVTPDZ2PI—Convert Packed Double-Precision FP Values to Packed Dword
) (=T 01T 3-249
CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision
FP ValUBS. . vt 3-251
CVTPI2ZPD—Convert Packed Dword Integers to Packed Double-Precision FP
ValUBS. . e e 3-254
CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP
ValUBS. . e e 3-256
CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword
LR (=T =T 3 3-258
CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision
FP ValIUBS. e 3-260
CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword
1) (=T 01T 5 3-263
CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer 3-265
CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP
VAU, e 3-267
CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value 3-269
CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value........... 3-271
CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP
VAU, L 3-273
CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer. 3-275
CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to
Packed DWOrd INtEQErS. v vttt e 3-277

CONTENTS

PAGE
CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to
Packed DWOrd INTEgErS . ..o v vttt 3-280
CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to
Packed DWOrd INTEAErS v et 3-282
CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to
Packed DWOrd INtegers ... ov vt e e e e 3-285
CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed
Y (=T 0T P 3-287
CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword
01 (=T = 3-289
CWD/CDQ/CQO0—Convert Word to Doubleword/Convert Doubleword to Quadword3-291
DAA—Decimal Adjust AL after Addition................cciiiiiiii i 3-293
DAS—Decimal Adjust AL after Subtraction..............cooiiiiiiiiiiiininnn 3-295
DEC—Decrement DY T ..ttt e 3-297
DIV—URSIgned Divide.ottt 3-300
DIVPD—Divide Packed Double-Precision Floating-Point Values 3-304
DIVPS—Divide Packed Single-Precision Floating-Point Values 3-306
DIVSD—Divide Scalar Double-Precision Floating-Point Values 3-308
DIVSS—Divide Scalar Single-Precision Floating-Point Values. 3-310
DPPD — Dot Product of Packed Double Precision Floating-Point Values. 3-312
DPPS — Dot Product of Packed Single Precision Floating-Point Values........... 3-315
EMMS—Empty MMX Technology State.........cooviveiiiiiiii i 3-318
ENTER—Make Stack Frame for Procedure Parameters............covvvvvninnnn. 3-320
EXTRACTPS — Extract Packed Single Precision Floating-Point Value 3-324
F2XMT—C0mMPULE 2X=T . ittt e e e e i e 3-326
FABS—ADSOIUTE ValUEot e 3-328
FADD/FADDP/FIADD—AAot 3-330
FBLD—Load Binary Coded Decimal...........coouvininiiiiiiiiieienee 3-334
FBSTP—Store BCD Integer and Pop.ovvv vt 3-336
FCHS—Change Sign.iii it i e e e e it i 3-339
FCLEX/FNCLEX—Clear EXCEPLIONS ...\ vv vttt aens 3-341
FCMOVcc—Floating-Point Conditional Move 3-343
FCOM/FCOMP/FCOMPP—Compare Floating Point Valuescocovvvvnens 3-345
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set
L AGS ot 3-349
FOOS—0SINe . oottt ettt e e e 3-352
FDECSTP—Decrement Stack-Top POINtercvvvi it 3-354
FDIV/EDIVP/FIDIV=DiIVIde.ttt 3-356
FDIVR/FDIVRP/FIDIVR—Reverse Divide.o.vvvviiiiiiiii i 3-360
FFREE—Free Floating-Point Registeroviiiii i 3-364
FICOM/FICOMP—Compare INtegervv ittt i 3-365
FILD—L0ad INteger .o vttt i i e i e e 3-368
FINCSTP—Increment Stack-Top Pointer. ...t 3-370
FINIT/FNINIT—Initialize Floating-PointUnit.............oviiiiii i 3-372
FIST/FISTP—St0re INteGET . vttt et e e 3-374
FISTTP—Store Integer with Truncation ..o 3-378
FLD—Load Floating Point Valueovvve e e 3-381

Vol. 2A Vi

CONTENTS

viii Vol. 2A

PAGE
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant............ 3-384
FLDCW—Load x87 FPU Control Word.ovvvii i 3-386
FLDENV—Load x87 FPU ENVIFONMENT. ...\ v ettt 3-388
FMUL/FMULP/FIMUL—MURIPIY . . .o 3-391
FNOP—NO Operation iv ittt e e 3-395
FPATAN—Partial Arctangentt et eaes 3-396
FPREM—Partial Remaindervviiti e 3-399
FPREM1—Partial Remainder.ouvriii i 3-402
FPTAN—Partial Tangent.vuirii e 3-405
FRNDINT—RoUN 10 INtegEr\ttt 3-408
FRSTOR—Restore x87 FPUState. ... v e 3-410
FSAVE/FNSAVE—Store X87 FPU State. ... vvvi i 3-413
FSCALE—SCalE. . vttt 3-417
FSIN— SN, ottt 3-419
FSINCOS—SINE @nd COSINE. . ..ottt t ettt et nen s 3-421
FSQRT—SQUare ROOT. ..\ttt e 3-424
FST/FSTP—Store Floating PointValue ... 3-426
FSTCW/FNSTCW—Store x87 FPU ControlWord...........ovvviiviiiiiiininnnns 3-429
FSTENV/FNSTENV—Store x87 FPU Environment.........coovvviiiiiiinennnn. 3-432
FSTSW/FNSTSW—Store x87 FPU Status Word.cooviiiiiiii e, 3-435
FSUB/FSUBP/FISUB—SUDTIacto 3-438
FSUBR/FSUBRP/FISUBR—Reverse Subtractcocovvviiiiiiiiiiienns 3-442
FT ST TS T ottt e e e 3-446
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values 3-448
FXAM—EXamINe MOAR/M. . ..ottt i 3-451
FXCH—Exchange Register CoNtentscvvvviiiiiiiiiii i 3-453
FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State 3-455
FXSAVE—Save x87 FPU, MMX Technology, and SSEState 3-459
FXTRACT—Extract Exponent and Significand.......................coooiintt. 3-469
FYL2X—CompuUte ¥ * 10G2X . ottt e ettt e 3-471
FYLZXPT—Compute Y *10G2(X +1). o v v 3-473
HADDPD—Packed Double-FP Horizontal Add.cocoviiiii i 3-475
HADDPS—Packed Single-FP Horizontal Add.cccoiiiiiiicice e 3-478
HUT—Halt o e 3-482
HSUBPD—Packed Double-FP Horizontal Subtractccoovviiviinntt. 3-484
HSUBPS—Packed Single-FP Horizontal Subtract ...t 3-487
IDIV=SIigned DiVidecouiriiii i et 3-491
IMUL—SIgned MUIIPIYo 3-495
IN—INPUL frOm POt .. i 3-500
INC—INCrement bY T ..o e 3-502
INS/INSB/INSW/INSD—Input from Port to Stringccovvviiiiiinants. 3-505
INSERTPS — Insert Packed Single Precision Floating-Point Value 3-510
INT n/INTO/INT 3—Call to Interrupt Procedure. ... v i 3-514
INVD—Invalidate Internal Caches.vvrii e 3-530
INVLPG—Invalidate TLB ENtry . ..oviviii it ea e 3-532
INVPCID—Invalidate Process-Context Identifier..............cocovvviviinninns. 3-534
IRET/IRETD—INterrupt RETUMN ... e e 3-538

CONTENTS

PAGE
Jec—Jump if Condition IS Meto e 3-549
T P UMD Lo 3-557
LAHF—Load Status Flags into AH Register........coovvvviiiiiiiii i 3-568
LAR—Load Access Rights Byteooviiiii 3-570
LDDQU—Load Unaligned Integer 128 BitS.cvviiv e 3-574
LDMXCSR—L0ad MXCSR REGISTEr .\t vvvtttei ettt 3-576
LDS/LES/LFS/LGS/LSS—Load Far POINtervvvvvviiiii i 3-578
LEA—Load Effective AdAressvvrvriiiiii i 3-584
LEAVE—High Level Procedure EXitcovvviiiiiii i 3-587
LFENCE—LOAd FENCE .o\ttt ettt e 3-589
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register.................... 3-591
LLDT—Load Local Descriptor Table Registercoovviiiiiiiiiiiiiiiinnnns 3-594
LMSW—Load Machine Status Wordovvviieii e 3-597
LOCK—Assert LOCK# Signal Prefixvuvuvni i 3-599
LODS/LODSB/LODSW/LODSD/LODSQ—L0ad String ... vvvvvevieiiiiieneness 3-601
LOOP/LOOPcc—Loop According to ECX Counter.........ovvvvvvvneniinninnnnnn, 3-605
LSL—Load Segment Limit.......cooiiiiiii i e i i e e i 3-608
LTR—Load Task RegiSterottt et 3-612
CHAPTER 4
INSTRUCTION SET REFERENCE, M-Z
4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM / PCMPISTRI /
PCMPISTRM 4-1
41.1 General DeSCriPtiON. ...t i e 4-1
41.2 SoUrce Data FOMmMAt ... ottt e 4-2
413 Aggregation Operationu.iuit it e 4-3
414 PO Y ot e 4-4
415 OUTPUL SBIBCTION ottt e 4-5
416 Valid/Invalid Override of COMPAriSONSovviiriiii i 4-6
41.7 Summary of IM8 Control bytecvv i e 4-7
418 Diagram Comparison and Aggregation Processoovviiiiiiiiiiiiienans 4-8
4.2 INSTRUCTIONS (M-Z) ottt ettt ettt et e et e 4-8
MASKMOVDQU—Store Selected Bytes of Double Quadword 4-9
MASKMOVQ—Store Selected Bytesof Quadwordcovviiiinvinininnnns 4-11
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values......... 4-13
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values.......... 4-16
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value........... 4-19
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value 4-21
MFENCE—MEMOTY FONCE. . vttt ettt e i iaas 4-23
MINPD—Return Minimum Packed Double-Precision Floating-Point Values.......... 4-25
MINPS—Return Minimum Packed Single-Precision Floating-Point Values 4-28
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value 4-31
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value 4-33
MONITOR—Set Up Monitor Addressovviiiiii i it eineiaaas 4-35
MOV MOV . ettt e 4-38
MOV—Move to/from Control Registers.ovviiii i 4-45
MOV—Move to/from Debug Registersccovviiiiiiiii s 4-49

Vol. 2A ix

CONTENTS

X Vol.2A

PAGE
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values........... 4-52
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values 4-55
MOVBE—Move Data After Swapping Bytes. ..o 4-58
MOVD/MOVQ—Move Doubleword/Move Quadwordcoovvviuiiinnnnn, 4-61
MOVDDUP—Move One Double-FP and Duplicateccovviiiiiiiiiinnn, 4-64
MOVDQA—Move Aligned Double Quadword.c.covovviiiiiiii i 4-67
MOVDQU—Move Unaligned Double Quadwordooviiiiiiiniiniinnnnnnns 4-70
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register............ 4-73
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low..... 4-75
MOVHPD—Move High Packed Double-Precision Floating-Point Value.............. 4-77
MOVHPS—Move High Packed Single-Precision Floating-Point Values............... 4-79
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High...... 4-81
MOVLPD—Move Low Packed Double-Precision Floating-Point Value............... 4-83
MOVLPS—Move Low Packed Single-Precision Floating-Point Values............... 4-85
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask 4-87
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask 4-89
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint 4-92
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint................... 4-95
MOVNTI—Store Doubleword Using Non-Temporal Hint........................... 4-97
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-
Temporal Hint .. 4-99
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-
Temporal Hint ..o 4-101
MOVNTQ—Store of Quadword Using Non-Temporal Hint.................ce. 4-103
MOVQ—Move QUadWOTdvet ettt e 4-105
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register 4-107
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String....... .. 4-109
MOVSD—Move Scalar Double-Precision Floating-Point Value 4-115
MOVSHDUP—Move Packed Single-FP High and Duplicate........................ 4-118
MOVSLDUP—Move Packed Single-FP Low and Duplicate. 4-121
MOVSS—Move Scalar Single-Precision Floating-Point Values..................... 4-124
MOVSX/MOVSXD—Move with Sign-EXtensionccovviiiviviiniiienannn, 4-127
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values....... 4-130
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values........ 4-133
MOVZX—Move with Zero-EXtendccooiiiii e 4-136
MPSADBW — Compute Multiple Packed Sums of Absolute Difference 4-138
MUL—Unsigned MURIPIY oo e 4-143
MULPD—Multiply Packed Double-Precision Floating-Point Values 4-146
MULPS—Multiply Packed Single-Precision Floating-Point Values 4-148
MULSD—Muiltiply Scalar Double-Precision Floating-Point Values 4-150
MULSS—Multiply Scalar Single-Precision Floating-Point Values................... 4-152
MWAIT—MONItOr Wait . ..ot e e 4-154
NEG—Two's Complement Negation.covvviiiii it eeeass 4-158
NOP—NO OPeration ..o v vttt ettt e 4-161
NOT—O0ne's Complement Negation.ovviiiiiii it 4-163
OR—Logical INCIUSIVE OR ...t 4-165
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values 4-168

CONTENTS

PAGE
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values............. 4-170
OUT—0UTPUL 10 POt ottt e e 4-172
OUTS/OUTSB/OUTSW/OUTSD—Output StringtoPortooovvvvvvivinnns. 4-175
PABSB/PABSW/PABSD — Packed Absolute Valuecovvvviinnnnnn 4-181
PACKSSWB/PACKSSDW—Pack with Signed Saturation.......................... 4-185
PACKUSDW — Pack with Unsigned Saturation..............coviiiiiiiiinnnnn 4-190
PACKUSWB—Pack with Unsigned Saturation................c.cocviiiiinnnnnn. 4-192
PADDB/PADDW/PADDD—Add Packed INtegers............covvviiininnininennnns 4-195
PADDQ—Add Packed Quadword INTEgersvvvrvririiiiiiii e 4-199
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation......... 4-201
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation. 4-204
PALIGNR — Packed Align Righto 4-207
PAND—LOGICEI AND. . .ottt ittt e e e 4-209
PANDN—LOGICal AND NOT ..\ttt 4-211
PAUSE—SPIN Loop HIiNt . ..ot 4-213
PAVGB/PAVGW—Average Packed Integerscovviiiiiiiiiiiiininen, 4-215
PBLENDVB — Variable Blend Packed Bytescovviiiiiiiiiiiiinnnnn 4-218
PBLENDW — Blend Packed Wordsoviii i iaeieens 4-222
PCLMULQDQ - Carry-Less Multiplication Quadwordccovviivvien.. 4-224
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal 4-228
PCMPEQQ — Compare Packed Qword DataforEqual...............coovvvvvnint 4-232
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index............ 4-234
PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask........... 4-236
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater
1= 4-238
PCMPGTQ — Compare Packed Data for Greater Than.............coocovvvvvinnnn, 4-242
PCMPISTRI — Packed Compare Implicit Length Strings, Return Index 4-244
PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask............ 4-246
PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword 4-248
PEXTRW—EXTract Word.o 4-251
PHADDW/PHADDD — Packed Horizontal Add.coovviiiiiiiiiiiei 4-254
PHADDSW — Packed Horizontal Add and Saturate............ccooovvivviinninnn. 4-257
PHMINPOSUW — Packed Horizontal Word Minimum.cooovvivvinninn.s. 4-259
PHSUBW/PHSUBD — Packed Horizontal Subtract..............covvviininnne. 4-261
PHSUBSW — Packed Horizontal Subtract and Saturateccovvnent 4-264
PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword.covvvviennnn. 4-266
PINSRW—INSErt WOrd.t 4-269
PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes 4-272
PMADDWD—Multiply and Add Packed INntegerscovviiiiininninenennnns 4-274
PMAXSB — Maximum of Packed Signed Byte Integers................coovovvnes. 4-277
PMAXSD — Maximum of Packed Signed Dword Integerscovun. 4-280
PMAXSW—Maximum of Packed Signed Word Integerscocovvnent 4-282
PMAXUB—Maximum of Packed Unsigned Byte Integers 4-285
PMAXUD — Maximum of Packed Unsigned Dword Integerscovvt 4-288
PMAXUW — Maximum of Packed Word Integers.............covviiiiiiinnnnnnns 4-290
PMINSB — Minimum of Packed Signed Byte Integerscooentt 4-292
PMINSD — Minimum of Packed Dword Integers............c..covviiiiniininnn. 4-295

Vol. 2A Xi

CONTENTS

xii Vol. 2A

PAGE
PMINSW—Minimum of Packed Signed Word Integersovovvivninns. 4-297
PMINUB—Minimum of Packed Unsigned Byte Integersooovvvnes. 4-300
PMINUD — Minimum of Packed Dword Integers..........coovvviiiniiininenennn. 4-303
PMINUW — Minimum of Packed Word Integers..............coviiiiiiiinnnn. 4-305
PMOVMSKB—Move Byte Mask.covuiiiiiii ittt 4-307
PMOVSX — Packed Move with SignExtend. ...t 4-309
PMOVZX — Packed Move with Zero Extendcovviviiiiiiiiiiiiniinnnns 4-313
PMULDQ — Multiply Packed Signed Dword Integers..........cooovvveiiiininnnnn, 4-317
PMULHRSW — Packed Multiply High with Roundand Scale 4-319
PMULHUW—Multiply Packed Unsigned Integers and Store High Result........... 4-322
PMULHW—Multiply Packed Signed Integers and Store HighResult............... 4-325
PMULLD — Multiply Packed Signed Dword Integers and Store Low Result........ 4-328
PMULLW—Multiply Packed Signed Integers and Store Low Result................ 4-330
PMULUDQ—Multiply Packed Unsigned Doubleword Integers..................... 4-333
POP—Pop a Value fromthe Stack..........cooviiiiiiii e 4-336
POPA/POPAD—Pop All General-Purpose Registers...........cooovvvvivininn. 4-343
POPCNT — Return the Count of Number of BitsSetto 1..................ot. 4-346
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Registerovovvvvvvnnn. 4-349
POR—Bitwise Logical ORot e e 4-353
PREFETCHh—Prefetch Datalnto Cachesccovviiiiiiii i 4-355
PSADBW—Compute Sum of Absolute Differences............cocoviviviiininnnnn. 4-358
PSHUFB — Packed Shuffle Bytescoiviii s 4-361
PSHUFD—Shuffle Packed Doublewordsovvviiiiiiiiiiiii i, 4-364
PSHUFHW—Shuffle Packed HighWords ... 4-366
PSHUFLW—Shuffle Packed Low Words.ovviiiiiiiiii i 4-368
PSHUFW—Shuffle Packed Words.ovviii e 4-370
PSIGNB/PSIGNW/PSIGND — Packed SIGNo 4-372
PSLLDQ—Shift Double Quadword Left Logicalccoovviiiiiiiinn. 4-377
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical...............covvvvnnn. 4-379
PSRAW/PSRAD—Shift Packed Data Right Arithmetic................ccovviinn, 4-386
PSRLDQ—Shift Double Quadword Right Logical...........ccoovviviiiiiiniinnnnn 4-391
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical......................... 4-393
PSUBB/PSUBW/PSUBD—Subtract Packed Integers.covvvviiiiiinnnns, 4-399
PSUBQ—Subtract Packed Quadword INntegersc.ovvviviiiiiiieinnennnnn. 4-403

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation..... 4-405
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned

Y= L0 = {0 4-408
[l IS I W Tu or= W o T T = 4-411
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data4-413
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data 4-419

PUSH—Push Word, Doubleword or Quadword Onto the Stack.................... 4-424
PUSHA/PUSHAD—Push All General-Purpose Registerscccovvvvvnt 4-429
PUSHF/PUSHFD—Push EFLAGS Register onto the Stackccoves. 4-432
PXOR—Logical EXCIUSIVE OR . ..ottt e 4-435
RCL/RCR/ROL/ROR-—ROTAte. . .ot e sttt 4-437

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values. ..4-445
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values4-448

CONTENTS

PAGE
RDFSBASE/RDGSBASE—Read FS/GS SegmentBaseovvvvvvvvviviivnninnns. 4-450
RDMSR—Read from Model Specific Register.oovviiiiiiii i 4-452
RDPMC—Read Performance-Monitoring Counterscovvviiininnnnnnes 4-454
RDRAND—Read Random NUMDEr.ovvut e 4-460
RDTSC—Read Time-Stamp Counter.ovvvi i i 4-462
RDTSCP—Read Time-Stamp Counter and Processor ID.............coovviivnnnn 4-464
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix 4-466
RET—Return from Procedurecovirii e 4-471
ROUNDPD — Round Packed Double Precision Floating-Point Values 4-484
ROUNDPS — Round Packed Single Precision Floating-Point Values 4-487
ROUNDSD — Round Scalar Double Precision Floating-Point Values 4-490
ROUNDSS — Round Scalar Single Precision Floating-Point Values................ 4-492
RSM—Resume from System ManagementMode...............covviiiininnnnt. 4-494
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision
Floating-Point Valueso vt 4-496
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-
POINt ValUE .. e 4-499
SAHF—Store AHINtO FIags.o v e e 4-501
SAL/SAR/SHL/SHR—ShIft . .ottt 4-503
SBB—Integer Subtraction With BOrrOWvviiiiii i 4-511
SCAS/SCASB/SCASW/SCASD—Scan StriNg .. .ovvvvii e 4-515
SETcc—Set Byte on Conditiono.vvrie i 4-520
R A O S o = = o 4-525
SGDT—Store Global Descriptor Table Register...........oovv i, 4-526
SHLD—Double Precision Shift Left.......coooviiii 4-529
SHRD—Double Precision Shift Right ... 4-533
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values 4-537
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values 4-540
SIDT—Store Interrupt Descriptor Table Registerooovviiiiiiiinat. 4-544
SLDT—Store Local Descriptor Table Register...........cooviiiiii it 4-547
SMSW—Store Machine Status Wordovvivriiiiii i 4-549
SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point
ValUBS e 4-552
SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point
ValUBS . et e 4-554

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value. 4-557
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value. . 4-559

STC—Set Carmy Flag . ..ottt e 4-561
STD—Set Direction FIag.vvivii i e 4-562
STI=Set INterrupt FIag. . ..ot 4-563
STMXCSR—Store MXCSR Register State. ...t 4-566
STOS/STOSB/STOSW/STOSD/STOSQ—Store String. . ..vvvvvvviiiiii s, 4-567
STR—St0re Task ReGISTer. .. .o\ttt e 4-572
SUB—SUDTrACT ..ottt e 4-574
SUBPD—Subtract Packed Double-Precision Floating-Point Values 4-577
SUBPS—Subtract Packed Single-Precision Floating-Point Values 4-579
SUBSD—Subtract Scalar Double-Precision Floating-Point Values 4-582

Vol. 2A xiii

CONTENTS

Xiv Vol. 2A

PAGE
SUBSS—Subtract Scalar Single-Precision Floating-Point Values 4-584
SWAPGS—Swap GS Base Registervvvviiiiii it e 4-586
SYSCALL—Fast System Call.coviri e 4-588
SYSENTER—Fast System Call . ..o e 4-590
SYSEXIT—Fast Return from Fast System Call. ..., 4-595
SYSRET—Return From FastSystem Call...........coiiiii i 4-599
B S e o Tu o= o T 4-601
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and
St B LGS . . ot 4-604
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and
St B LA G S . . ottt 4-606
UD2—Undefined INSTructionvvvvi e 4-608
UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point
ValUBS. e e 4-609
UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point
ValUBS. . et 4-612
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point
ValUBS. . e e 4-615
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point
ValUBS e 4-618
VBROADCAST—Load with Broadcast.covvviieiiii i 4-621
VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values 4-625
VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value.............. 4-628
VERR/VERW—Verify a Segment for Reading or Writing 4-631
VEXTRACTF128 — Extract Packed Floating-Point Values 4-634
VINSERTF128 — Insert Packed Floating-Point Values........................... 4-636
VMASKMOV—Conditional SIMD Packed Loads and Stores..............covvvvnne 4-638
VPERMILPD — Permute Double-Precision Floating-Point Values 4-642
VPERMILPS — Permute Single-Precision Floating-Point Values................... 4-646
VPERMZ2F128 — Permute Floating-Point Values...............cocooiiiiinnns. 4-650
VTESTPD/VTESTPS—Packed Bit TeStovviii i 4-653
VZEROALL—Zero All YMM REGISTEIS ..o vttt ittt aens 4-657
VVZEROUPPER—Zero Upper Bits of YMM Registers..........ovoveviiiiininnnnn. 4-659
WAIT/FWAIT—Wait. . et e e e e 4-661
WBINVD—Write Back and Invalidate Cacheccovviiiiii i, 4-663
WRFSBASE/WRGSBASE—Write FS/GS Segment Base.ovvvvvvvviinineninnns 4-665
WRMSR—Write to Model Specific Register.............cocoviiiiiiiiiiiin, 4-667
XADD—Exchange and Add.ovviiii 4-669
XCHG—Exchange Register/Memory with Registercocvvviiinin.n. 4-672
XGETBV—CGet Value of Extended Control Register.............c..oovvvvviininntn 4-675
XLAT/XLATB—Table Look-up Translationcoiiiiiiii i, 4-677
XOR—Logical EXCIUSIVE OR i i e e 4-680
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values.......... 4-683
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values.......... 4-685
XRSTOR—Restore Processor Extended States.covvvviviiiiiiiiinennennns 4-687
XSAVE—Save Processor Extended States............ooviviiiiiiii i 4-694
XSAVEOPT—Save Processor Extended States Optimized.covvt 4-698

CONTENTS

PAGE
XSETBV—Set Extended Control Registercoooviiiiiiiiiiiiiiiennnnns 4-703
CHAPTER 5
SAFER MODE EXTENSIONS REFERENCE
5.1 OV RV B ot e e e 5-1
5.2 SMX FUNCTION AL Y . ettt e e 5-1
5.2.1 Detecting and ENabling SMX it e 5-2
5.2.2 SMX INSTrUCTION SUMMIEMY. ..ottt et e e aens 5-3
5.2.21 GETSECICAPABILITIEST vt ettt e e 5-3
5222 GETSECIENTERACCS - . ottt ettt e e e 5-4
5223 GET S B EXITAC . ottt ettt e e e e e e 5-4
5224 GETSECISENT R .« vttt ettt e e e e e e 5-4
5.2.2.5 GET S E IS EXIT T ettt ettt e e e e e 5-5
5226 GETSECIPARAMETERST v vttt ettt et e enees 5-5
5227 GETSECISMOTRL. « ettt ettt et e e e e 5-5
5228 GETSECIWAKEUP . . ettt e e e 5-6
523 Measured Environment and SMXo 5-6
53 GETSEC LEAF FUNCTIONS. .« ettt ettt et e 5-7
GETSEC[CAPABILITIES] - Report the SMX Capabilities.ccocovvvviiiiiininn. 5-9
GETSEC[ENTERACCS] - Execute Authenticated Chipset Code...................... 5-12
GETSEC[EXITAC]—EXxit Authenticated Code ExecutionModeoovvvvvnent 5-23
GETSEC[SENTER]—Enter a Measured Environment.........coovvviiiiiiiinnnnnnes 5-27
GETSEC[SEXIT]—Exit Measured Environmentcoviiiiiiiiiiinannnn, 5-39
GETSEC[PARAMETERS]—Report the SMX Parameters.........ccovvviiinvnnnnn.. 5-43
GETSEC[SMCTRL]—SMX Mode Controlvveee e 5-49
GETSEC[WAKEUP]—Wake up sleeping processors in measured environment....... 5-52
APPENDIX A
OPCODE MAP
A1 USING OPCODE TABLESottt ettt et et et i A-1
A2 KEY TO ABBREVIATIONS . . . ettt ettt e e e e A-2
A2l Codes for AddressingMethod e A-2
A2.2 Codes TOr OPerand Ty P .. v vttt ettt ettt A-3
A23 REGISTET COOBS . ot vttt et e e s e A-4
A24 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes................. A-5
A24.1 One-Byte Opcode INSTrUCLIONS. vv v A-5
A24.2 Two-Byte Opcode INStructionsov vt i A-6
A243 Three-Byte Opcode INStructions. ..ot i A-7
A244 VEX Prefix INStrUCtioNSot A-7
A2.5 Superscripts Utilized in Opcode Tables.vviivi i A-8
A3 ONE, TWO, AND THREE-BYTE OPCODE MAPS. ot A-9
A4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTEOPCODESvvvvunt A-20
A4 Opcode Look-up Examples Using Opcode Extensionscocvviiiivnnnnn, A-20
Ad4.2 Opcode EXtension Tablesoviiit i e e e A-21
A5 ESCAPE OPCODE INSTRUCTIONS ..ottt ettt ettt e s A-23
A51 Opcode Look-up Examples for Escape Instruction Opcodes................covvunn A-23
A5.2 Escape Opcode Instruction Tables e A-23

Vol. 2A Xv

CONTENTS

PAGE

A5.2.1 Escape Opcodes with DB as FirstByteccovviiiiii i A-24
A5.2.2 Escape Opcodes with D9 as FirstByte ... A-25
A523 Escape Opcodes with DA as First Byte ... A-26
A5.24 Escape Opcodes with DB as FirstByteooovvvvviiiii i A-27
A5.25 Escape Opcodes with DCas First Byte. ... A-28
A5.26 Escape Opcodes withDD as First Byteoooviiiiiiii i A-29
A5.2.7 Escape Opcodes with DEas First Byte.covviiii i A-30
A5.2.8 Escape Opcodes with DF As First Byte ... A-31
APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1 MACHINE INSTRUCTION FORMAT ..ttt et B-1
B.1.1 Legacy PrefiXes. . .. B-2
B.1.2 REX P iXES vttt e B-2
B.1.3 OPCOdE FieldsS. . . vttt e B-2
B.1.4 SPECial FIBIAS . .ottt e B-3
B.1.4.1 Reg Field (reg) for Non-64-BitModesc.coviiiiiiiiiiii s B-3
B.14.2 Reg Field (reg) for 64-BitModevvvii i i B-5
B.1.4.3 Encoding of Operand Size (W) Bitcoviiiii i B-6
B.1.4.4 SIgN-EXteNd (S) Bil ..o\ttt B-6
B.14.5 Segment Register (sreg) Fieldt B-7
B.14.6 Special-Purpose Register (eee) Field ..ot B-7
B.1.4.7 Condition Test (tttn) Field ..o s B-8
B.1.4.8 Direction () Bit.ovir i B-9
B.1.5 01 =T N[0 (=S B-10
B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-64-BIT

MODES ..ttt e e B-10
B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode B-25
B3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS B-54
B4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONS B-55
B.5 MMX INSTRUCTION FORMATS AND ENCODINGS ..ot i B-56
B.5.1 Granularity Field () . o v vt s B-56
B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg)......... B-56
B.5.3 MMX Instruction Formats and Encodings Tablecvviiiiiiiiiiinnnnns, B-56
B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS............. B-60
B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS. ..o B-60
B.8 SSE INSTRUCTION FORMATS AND ENCODINGS. oo B-61
B9 SSE2 INSTRUCTION FORMATS AND ENCODINGS ... oo B-70
B.9.1 Granularity Field (Gg) . ..o v v B-70
B.10 SSE3 FORMATS AND ENCODINGS TABLEo ieoe et B-88
B.11 SSSE3 FORMATS AND ENCODING TABLE . .. oo vttt e B-90
B.12 AESNI AND PCLMULQDAQ INSTRUCTION FORMATS AND ENCODINGS.cvvvvnen B-94
B.13 SPECIAL ENCODINGS FOR 64-BITMODE vvvvv vt B-95
B.14 SSE4.T FORMATS AND ENCODING TABLE. .« v v e et B-99
B.15 SSE4.2 FORMATS AND ENCODING TABLE. .« oo et B-108
B.16 AVX FORMATS AND ENCODING TABLEottt B-109
B.17 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGSoovvvvveeae B-168

XVi Vol. 2A

CONTENTS

PAGE
B.18 VMX INSTRUCTIONS . ottt B-174
B.19 SMX INSTRUCTIONS . .ot B-176
APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C1 SIMPLE INTRINSICS .ot e e e s C-2
C2 COMPOSITE INTRINSICS . . oottt e e Cc17
FIGURES
Figure 1-1. Bitand Byte Order ...o.v it e 1-5
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation......................oovuent 1-8
Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format................coovvien.n. 2-1
Figure 2-2. Table Interpretation of ModR/MByte (CBH)........ccovvviiiiiii i 2-5
Figure 2-3. Prefix Ordering in 64-bitModec.oviiiiii e 2-9
Figure 2-4. Memory Addressing Without an SIB Byte; REXX NotUsed..................... 2-11
Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used.......... 2-11
Figure 2-6. Memory Addressing WithaSIBByte. ...t 2-12
Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used............. 2-12
Figure 2-8. Instruction Encoding Format with VEX Prefixocoiiiiinii i, 2-17
Figure 2-9. VEX DItfields ..o 2-19
Figure 3-1. Bit Offset for BIT[RAX, 21] « . vttt 3-14
Figure 3-2. Memory Bit INdeXiNg. vv ot e e 3-15
Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract............cccoiiiiiiiiiinn.s, 3-47
Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract..............cccoiiiiiiinnnnns. 3-50
Figure 3-5. Version Information Returned by CPUIDINEAXo 3-211
Figure 3-6. Feature Information Returned in the ECX Register.............ovovvivnnnnn. 3-214
Figure 3-7. Feature Information Returned in the EDX Register..................coovvhts 3-217
Figure 3-8. Determination of Support for the Processor Brand String.................... 3-228
Figure 3-9. Algorithm for Extracting Maximum Processor Frequency 3-230
Figure 3-10. CVTDQZPD (VEX.256 encoded VErsion)...........vvreinieinnineinneenns 3-242
Figure 3-11. VCVTPD2DQ (VEX.256 encoded VErsion)ovvvviiininnnninenenennn. 3-247
Figure 3-12. VCVTPD2PS (VEX.256 encoded VErSioN).vvvviviiiiieiiiniieiinennns 3-252
Figure 3-13. CVTPS2PD (VEX.256 encoded VErsion)vvvviriinerniniiiannennenn. 3-261
Figure 3-14. VCVTTPD2DQ (VEX.256 encoded Version)..........ovevenvrniriinennennenn. 3-278
Figure 3-15. HADDPD—Packed Double-FP Horizontal Add...............ccoiiiiiiint 3-476
Figure 3-16. VHADDPD Operation.vuiuii ittt 3-476
Figure 3-17. HADDPS—Packed Single-FP Horizontal Addcovviiiiiiiiinnnnns 3-479
Figure 3-18. VHADDPS OPerationvtiei ittt 3-479
Figure 3-19. HSUBPD—Packed Double-FP Horizontal Subtract...................covvvees. 3-485
Figure 3-20. VHSUBPD Operationuvit ittt ittt et i ettt e i eaas 3-485
Figure 3-21. HSUBPS—Packed Single-FP Horizontal Subtract.......................... ... 3-488
Figure 3-22. VHSUBPS 0perationouiriii ittt eaeneees 3-488
Figure 3-23. INVPCID DESCriPtOr . vttt ettt 3-535
Figure 4-1. Operation of PCMPSTRx and PCMPESTRX. ... vvvvvv it ieeaas 4-8
Figure 4-2. MOVDDUP—Move One Double-FP and Duplicate..............ccovoviiviinnn. 4-65
Figure 4-3. MOVSHDUP—Move Packed Single-FP High and Duplicate 4-119

Vol. 2A xvii

CONTENTS

Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22.
Figure 4-23.
Figure 4-24.
Figure 4-25.
Figure 4-26.
Figure 4-27.
Figure 4-28.
Figure 4-29.
Figure 4-30.
Figure 4-31.
Figure 4-32.
Figure 4-33.
Figure 4-34.

Figure A-1.
Figure B-1.
Figure B-2.

TABLES

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.
Table 2-10.

xviii Vol. 2A

PAGE
MOVSLDUP—Move Packed Single-FP Low and Duplicate 4-122
Operation of the PACKSSDW Instruction Using 64-bit Operands 4-186
PMADDWD Execution Model Using 64-bit Operands.cocvvvvvnnn. 4-275
PMULHUW and PMULHW Instruction Operation Using 64-bit Operands........ 4-323
PMULLU Instruction Operation Using 64-bitOperands 4-331
PSADBW Instruction Operation Using 64-bitOperands....................... 4-359
PSHUB with 64-Bit Operands.covvuiiiiiiiii i ieaeaens 4-363
PSHUFD Instruction Operation.vvvuviiiiiiii i iiiiiieeanens 4-364
PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand 4-381
PSRAW and PSRAD Instruction Operation Using a 64-bit Operand 4-387
PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand....... 4-395
PUNPCKHBW Instruction Operation Using 64-bit Operands................... 4-414
PUNPCKLBW Instruction Operation Using 64-bit Operands 4-420
Bit Control Fields of Immediate Byte for ROUNDxx Instruction 4-485
SHUFPD Shuffle Operationooiii i e 4-538
SHUFPS Shuffle Operationoviiiiiii e 4-541
UNPCKHPD Instruction High Unpack and Interleave Operation................ 4-610
UNPCKHPS Instruction High Unpack and Interleave Operation................ 4-613
UNPCKLPD Instruction Low Unpack and Interleave Operation 4-616
UNPCKLPS Instruction Low Unpack and Interleave Operation................. 4-619
VBROADCASTSS Operation (VEX.256 encoded version)............ovvvvnvnn 4-622
VBROADCASTSS Operation (128-bit version)............covviiiiiiiienen.. 4-622
VBROADCASTSD OpPeration. . ..o v vvvteteeeeie et eieienean 4-623
VBROADCASTF128 Operationvvu ettt ie et nenenns 4-623
VCVTPHZPS (128-bit Version).ovvvviiniiii i 4-626
VCVTPS2PH (128-bit Version).vviviiiiii e 4-629
VPERMILPD 0peration. v v e ettt i 4-643
VPERMILPD Shuffle CONtrol ..ot 4-643
VPERMILPS Operation. ..ottt et 4-647
VPERMILPS Shuffle CoNtrol.ovvi i e 4-647
VPERMZF 128 Operationvvirititi ittt iiaaas 4-650
ModR/M Byte nnn Field (Bits 5,4, and 3)ovvvviiii i A-20
General Machine Instruction Format.covvvi i B-1
Hybrid Notation of VEX-Encoded Key InstructionBytes...................... B-110
16-Bit Addressing Forms with the ModR/MByte............covviiiiiiiininnnn 2-6
32-Bit Addressing Forms with the ModR/MByte..............covviiiiiienne, 2-7
32-Bit Addressing Forms withthe SIBByte ..ot 2-8
REX Prefix Fields [BITS: OTOOWRXBI. ..ot vvviei e 2-11
Special Cases 0f REX ENCOdINGS. vv v 2-13
Direct Memory Offset Form of MOV,coiiiiii e 2-14
RIP-Relative AddresSing. .. v. v vttt 2-15
VEX.vvvv to register Name MapPing «vvvvereeneniii e eiiaiieenenns 2-22
Instructions with @ VEX.vvvv destinationcooiiiiiiiiiiinn. 2-23
VEX.m-mmmm interpretation ... e 2-24

Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.
Table 2-16.
Table 2-17.
Table 2-18.
Table 2-19.
Table 2-20.
Table 2-21.
Table 2-22.
Table 2-23.
Table 2-24.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.

Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.
Table 3-17.
Table 3-18.
Table 3-19.
Table 3-20.
Table 3-21.
Table 3-22.
Table 3-23.
Table 3-24.
Table 3-25.
Table 3-26.
Table 3-27.
Table 3-28.
Table 3-29.
Table 3-30.
Table 3-31.
Table 3-32.
Table 3-33.

CONTENTS

PAGE
VEX. L interpretation. . ..o e e 2-24
VEX PP iNTerpretation 2-25
Exception class desCriptionvuvr it 2-27
Instructions in each Exception ClIassvvvv i 2-28
#UD Exception and VEXW=1 Encodingcoiviiiiiiiiiiiiiiiiiieianns 2-29
#UD Exception and VEX.LFieldEncoding ... 2-30
Type 1 Class Exception CoNditionso.vviiiiiiiii i 2-31
Type 2 Class Exception CoNditionsvvviiii e 2-32
Type 3 Class Exception CoNditionsvvviiii i 2-33
Type 4 Class Exception Conditionsovrviiiiiiiii i 2-34
Type 5 Class Exception Conditions ..ottt 2-35
Type 6 Class Exception Conditionscvviiiiiii i 2-36
Type 7 Class Exception CoNditionsvviiiiiiiii i, 2-37
Type 8 Class Exception CoNditionsvvvii i 2-38
Register Codes Associated With +rb, +rw, +rd, +rocoooiiiiiiinn, 3-3
Range of Bit Positions Specified by Bit Offset Operands....................... 3-15
Intel 64 and IA-32 General EXCePtioNS.ov vttt 3-19
x87 FPU Floating-Point EXCEPLiONS.o 3-21
SIMD Floating-Point EXCEPTIONSvvit i 3-21
Decision Table for CLIRESUISvvvve e 3-137
Comparison Predicate for CMPPD and CMPPS Instructions 3-154
Pseudo-Op and CMPPD Implementation.coovviiiiiiiiiiiiannns 3-155
Comparison Predicate for VCMPPD and VCMPPS Instructions 3-156
Pseudo-Op and VCMPPD Implementationccoviiiiiiiiiiiiinnn, 3-158
Pseudo-0ps and CMPPS. 3-164
Pseudo-Op and VCMPPS Implementation.coviiiiiiviniiiiiiennn, 3-165
Pseudo-0ps and CMPSD. . ..o v e 3-177
Pseudo-Op and VCMPSD Implementationcooviviiiiiiinininnes 3-178
Pseudo-0Ops and CMPSS. . .. i e e 3-183
Pseudo-Op and VCMPSS Implementation.cooiiiiiiiiii i 3-184
Information Returned by CPUID Instructioncoovivviiieinnnnnn. 3-199
Highest CPUID Source Operand for Intel 64 and IA-32 Processors............ 3-210
Processor Type Fieldovoviii 3-212
Feature Information Returned in the ECX Register................coovvnnes 3-215
More on Feature Information Returned in the EDX Register 3-218
€ncoding of CPUID Leaf 2 Descriptorsovviiiiiiiiiiiiiiiiiieannss 3-221
Processor Brand String Returned with Pentium 4 Processor................. 3-229
Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings. ... 3-231
DIV ACHION Lttt 3-301
Results Obtained from F2XM1 ... o 3-326
Results Obtained from FABSttt 3-328
FADD/FADDP/FIADD RESUITS . ..ttt vv e ee et e 3-331
FBSTP RESUILS v\ttt ettt ettt e e 3-336
FCHS RESURS. . vttt s 3-339
FCOM/FCOMP/FCOMPP RESUIS. . ..o vt 3-345
FCOMI/FCOMIP/ FUCOMI/FUCOMIP RESUIS . v v v v v e ieieieas 3-349
FCOS RESUS. ottt vttt ettt e 3-352

Vol. 2A Xix

CONTENTS

Table 3-34.
Table 3-35.
Table 3-36.
Table 3-37.
Table 3-38.
Table 3-39.
Table 3-40.
Table 3-41.
Table 3-42.
Table 3-43.
Table 3-44.
Table 3-45.
Table 3-46.
Table 3-47.
Table 3-48.
Table 3-49.
Table 3-50.
Table 3-51.
Table 3-52.
Table 3-53.
Table 3-54.
Table 3-55.
Table 3-56.
Table 3-57.
Table 3-58.
Table 3-59.
Table 3-60.
Table 3-61.
Table 3-62.
Table 3-63.
Table 3-64.
Table 3-65.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.

Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.

XX Vol. 2A

PAGE
FDIV/EDIVP/FIDIV RESUILS . . .ot e ettt 3-357
FDIVR/FDIVRP/FIDIVR RESUIESot 3-361
FICOM/FICOMP RESUILS . ..ottt e 3-365
FIST/FISTP RESURS. ..\ttt e 3-374
FIST TP RESUIS vttt e 3-378
FMUL/FMULP/FIMUL RESUIES ..ot 3-392
FPATAN RESUIS « o vttt e ettt e et 3-397
FPREM RESUIS. . .ttt e 3-399
FPREMT RESURS . ..ottt 3-402
FPTAN RESURS. . .ottt e 3-405
FSCALE RESURS . .ttt 3-417
FSIN RESURS. ..t e 3-419
FSINCOS RESURS . . .o e vttt 3-421
FSQRT RESUIS. ..ottt e 3-424
FSUB/FSUBP/FISUB RESUILS . ..o 3-439
FSUBR/FSUBRP/FISUBR RESUIS . . vt voe e 3-443
FT ST RESURS ..ttt e 3-446
FUCOM/FUCOMP/FUCOMPP RESUIS . .ot v e 3-448
FXAM RESURS. vttt 3-451
Non-64-bit-Mode Layout of FXSAVE and FXRSTOR Memory Region 3-459
Field Definitionsove e 3-461
Recreating FSAVE Format........ovuiiii e 3-463
Layout of the 64-bit-mode FXSAVEG4 Map (requires REXW =1)............. 3-464
Layout of the 64-bit-mode FXSAVE Map (REXW =0)ovvvvvivninnnn. 3-465
FY L2 RESUNS . . vttt 3-471
FYL2XPT RESUIS .o ettt e 3-473
IDIV RESUITS ..ttt ettt e 3-492
DECISION TablE . vttt 3-515
Segment and Gate Ty PES. . o v vttt 3-571
Non-64-bit Mode LEA Operation with Address and Operand Size Attributes...3-584
64-bit Mode LEA Operation with Address and Operand Size Attributes........ 3-585
Segment and Gate Descriptor TYPES .. vttt 3-609
Source Data FOrmat. ve it 4-2
Aggregation OPerationovuvti e 4-3
Aggregation OpPerationu. vt i i e 4-4
0] = T 7 4-5
OUPUTL SBIBCHION. . .ottt e e 4-5
OUTPUL SBIBCTION. ottt 4-5
Comparison Result for Each Element Pair BoolRes[ij]ccovvvvvvinininns. 4-6
Summary of ImMm8 Control Byte.........covvii 4-7
MUL RESUIS . e et e 4-144
MWAIT Extension Register (ECX).ovirviiii e 4-155
MWAIT Hints Register (EAX) . .. vvvrri e 4-156
Recommended Multi-Byte Sequence of NOP Instruction...................... 4-162
PCLMULQDAQ Quadword Selection of Inmediate Byteccoovventn. 4-224
Pseudo-Op and PCLMULQDQ Implementation...........c..covviiiiiiinnnnns, 4-225

Valid General and Special Purpose Performance Counter Index Range for

Table 4-16.
Table 4-17.
Table 4-18.
Table 4-19.
Table 4-20.
Table 4-21.
Table 4-22.
Table 4-23.
Table 4-24.
Table 4-25.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.
Table 5-10.
Table 5-11.
Table 5-12.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-9.

Table A-10.
Table A-11.
Table A-12.
Table A-13.
Table A-14.
Table A-15.
Table A-16.
Table A-17.
Table A-18.
Table A-19.
Table A-20.
Table A-21.
Table A-22.

Table B-1.
Table B-2.

CONTENTS

PAGE
) 4-455
REPEAT PrefiXS . ottt 4-469
Rounding Modes and Encoding of Rounding Control (RC) Field................ 4-485
Decision Table for STIRESUIS.vvvuv e 4-564
SWAPGS Operation Parameterscocovviiiii et 4-586
MSRs Used By the SYSENTER and SYSEXIT Instructions..................... 4-590
Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions .. 4-629
General Layout of XSAVE/XRSTOR Save Area........ovvvvvivininiiinananns 4-688
XSAVEHEADER Layout . ..ottt 4-689
Processor Supplied Init Values XRSTORMay Usecovvivviiniinnen. 4-689
Reserved Bit Checkingand XRSTORttt 4-690
Layout of IA32_FEATURE_CONTROLvviiii it ieiaas 5-2
GETSEC Leaf FUNCHIONS ..ottt 5-3
Getsec Capability Result Encoding (EBX =0)covviiiiiiiiiii i 5-9
Register State Initialization after GETSEC[ENTERACCS].ovvvvvivnnnnn. 5-15
IA32_MISC_ENALBES MSR Initialization by ENTERACCS and SENTER 5-17
Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP] 5-31
SMX Reporting Parameters Format. ...t 5-43
TXT Feature EXtENSIONS FIAgsovvrviii e 5-44
External Memory Types Using Parameter 3..........cccovviiiiiiiiiiiiiinnnnn, 5-46
Default Parameter Values ..o 5-46
Supported Actions for GETSEC[SMCTRL(O)] ..o v vvvve i 5-50
RLP MVMM JOIN Data Structureot i e 5-52
Superscripts Utilized inOpcode Tables. ...t A-8
One-byte Opcode Map: (O0H — F7H) * .. oo A-10
Two-byte Opcode Map: 00H — 77H (First ByteisOFH) *....................... A-12
Three-byte Opcode Map: 00H — F7H (First Two Bytes are OF 38H) *........... A-16
Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *........... A-18
Opcode Extensions for One- and Two-byte Opcodes by Group Number * A-21
D8 Opcode Map When ModR/M Byte is Within OOHto BFH* A-24
D8 Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-24
D9 Opcode Map When ModR/M Byte is WithinOOHtoBFH* A-25
D9 Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-25
DA Opcode Map When ModR/M Byte is Within OOHto BFH™* A-26
DA Opcode Map When ModR/M Byte is Outside OOHtoBFH *.................. A-26
DB Opcode Map When ModR/M Byte is WithinOOHto BFH* A-27
DB Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-27
DC Opcode Map When ModR/M Byte is Within OOHto BFH™*.................... A-28
DC Opcode Map When ModR/M Byte is Outside OOHto BFH* A-28
DD Opcode Map When ModR/M Byte is Within OOHto BFH™* A-29
DD Opcode Map When ModR/M Byte is Outside OOHtoBFH *.................. A-29
DE Opcode Map When ModR/M Byte is WithinOOHto BFH*.................... A-30
DE Opcode Map When ModR/M Byte is Outside OOHto BFH * A-30
DF Opcode Map When ModR/M Byte is Within OOHto BFH™*.................... A-31
DF Opcode Map When ModR/M Byte is Outside OOHto BFH * A-31
Special Fields Within Instruction Encodings. ... B-3
Encoding of reg Field When w Field is Not Present in Instruction................ B-3

Vol. 2A xxi

CONTENTS

Table B-4.
Table B-3.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.
Table B-11.
Table B-10.
Table B-12.
Table B-13.
Table B-14.
Table B-15.
Table B-16.

Table B-17.
Table B-18.
Table B-19.
Table B-20.
Table B-21.
Table B-22.
Table B-23.
Table B-24.
Table B-25.
Table B-26.
Table B-27.
Table B-28.
Table B-29.
Table B-30.
Table B-31.
Table B-32.
Table B-33.
Table B-34.
Table B-35.
Table B-36.
Table B-37.
Table B-38.
Table B-39.
Table B-40.
Table B-41.
Table C-1.

Table C-2.

xXii Vol. 2A

PAGE
Encoding of reg Field When w Field is Not Present in Instruction................ B-5
Encoding of reg Field When w Field is Present in Instruction.................... B-5
Encoding of reg Field When w Field is Present in Instruction.................... B-6
Encoding of Operand Size (W) Bitcoviii B-6
Encoding of Sign-Extend (S) Bitcoovvviiii B-7
Encoding of the Segment Register (sreg) Field..............ccovviiiiiiinnn, B-7
Encoding of Special-Purpose Register (eee) Fieldccocoviiviiinn. B-8
Encoding of Operation Direction (d) Bit...........cocvviiiiiiiiiiiii i B-9
Encoding of Conditional Test (tttn) Field. ... B-9
Notes on Instruction ENCOdINGo vv v B-10
General Purpose Instruction Formats and Encodings for Non-64-Bit Modes. B-10
Special SYMDOIS. . .ot e B-25
General Purpose Instruction Formats and Encodings for 64-Bit Mode B-25
Pentium Processor Family Instruction Formats and Encodings, Non-64-Bit
MOQES . et e B-55
Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode B-55
Encoding of Granularity of Data Field (@g) vvvvvvvei i B-56
MMX Instruction Formats and ENcodingsoviiiiii i B-56
Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions..... B-60
Formats and Encodings of P6 Family Instructions...............coooviiiiin.n, B-60
Formats and Encodings of SSE Floating-Point Instructions. B-62
Formats and Encodings of SSE Integer Instructionscooivvnnn. B-68
Format and Encoding of SSE Cacheability & Memory Ordering Instructions B-69
Encoding of Granularity of Data Field (@g) vvvvvvvreii i B-70
Formats and Encodings of SSE2 Floating-Point Instructions B-71
Formats and Encodings of SSE2 Integer Instructionsc.covvvvnnn B-80
Format and Encoding of SSE2 Cacheability Instructionsoovt B-87
Formats and Encodings of SSE3 Floating-Point Instructions B-88
Formats and Encodings for SSE3 Event Management Instructions B-89
Formats and Encodings for SSE3 Integer and Move Instructions B-89
Formats and Encodings for SSSE3 Instructionscccovviviiiiiinann, B-90
Formats and Encodings of AESNI and PCLMULQDAQ Instructions. B-94
Special Case Instructions Promoted UsingREXWcovviiiiiiiinnnt, B-96
Encodings of SSE4.1T INSTrUCtiONSot v v B-100
Encodings of SSE4.2 INSTruCtionsoovviiiiii it B-108
Encodings of AVX INSTructions. ... e B-110
General Floating-Point Instruction Formats...........coooviiiiii i, B-168
Floating-Point Instruction Formats and Encodingsoovvvvivvnenns,. B-168
Encodings for VMX INSTructions. ovvvv v B-174
Encodings for SMX INSTrUCtiONS oo v B-176
SIMPlE INEFINSICS oottt e e 3
Composite INTMNSICS. . .\ttt i e e e C-17

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A,
2B & 2C: Instruction Set Reference (order numbers 253666, 253667 and 326018)
are part of a set that describes the architecture and programming environment of all
Intel 64 and IA-32 architecture processors. Other volumes in this set are:

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture (Order Number 253665).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
3A, 3B & 3C: System Programming Guide (order numbers 253668, 253669 and
326019).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode
structure. These volumes apply to application programmers and to programmers
who write operating systems or executives. The Inte/l® 64 and IA-32 Architectures
Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the operating-system
support environment of Intel 64 and IA-32 processors. These volumes target oper-
ating-system and BIOS designers. In addition, the Inte/® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, addresses the programming environment
for classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN
THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and IA-32 processors, which include:

* Pentium® processors

® P6 family processors

* Pentium® 4 processors

* Pentium® M processors

* Intel® Xeon® processors

* Pentium® D processors

* Pentium® processor Extreme Editions
* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

Vol.2A 1-1

ABOUT THIS MANUAL

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor EB000, T9000 series

* Intel® Atom™ processor family

* Intel® Core™i7 processor

* Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families
* Intel® Xeon® processor E5 family

* Intel® Xeon® processor E3 family

* Intel® Core™ i7-3930K processor

* 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-
2XXX processor series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® 111, and Pentium® 11l Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

1-2 Vol. 2A

ABOUT THIS MANUAL

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor
Q9000 series, and Intel® Core™2 Extreme processors QX9000, X9000 series, Intel®
Core™?2 processor E8000 series are based on Enhanced Intel® Core™ microarchitec-
ture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture
and supports Intel 64 architecture.

The Intel® Core™i7 processor and the Intel® Core™i5 processor are based on the
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture. The Intel® Atom™ processor Z5xx series
support IA-32 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3 family, Intel®
Core™ i7-3930K processor, 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-
2xxx, Intel® Core™ i3-2xxx processor series, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Xeon® processor 3000, 3200, 5000, 5100,
5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® Core™2 Duo, Intel®
Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon
processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible
with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 2A, 2B AND 2C:
INSTRUCTION SET REFERENCE

A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B & 2C, content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel® manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format
used for all IA-32 instructions and gives the allowable encodings of prefixes, the
operand-identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB
byte), and the displacement and immediate bytes.

Vol.2A 1-3

ABOUT THIS MANUAL

Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32
instructions in detail, including an algorithmic description of operations, the effect on
flags, the effect of operand- and address-size attributes, and the exceptions that
may be generated. The instructions are arranged in alphabetical order. General-
purpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-Z. Continues the description of Intel
64 and IA-32 instructions started in Chapter 3. It provides the balance of the alpha-
betized list of instructions and starts Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

Chapter 5— Safer Mode Extensions Reference. Describes the safer mode exten-
sions (SMX). SMX is intended for a system executive to support launching a
measured environment in a platform where the identity of the software controlling
the platform hardware can be measured for the purpose of making trust decisions.
This chapter starts Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of
each form of each IA-32 instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents.
Lists the Intel® C/C++ compiler intrinsics and their assembly code equivalents for
each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. IA-32 processors are “little endian” machines; this means the
bytes of a word are numbered starting from the least significant byte. Figure 1-1
illustrates these conventions.

1-4 Vol. 2A

ABOUT THIS MANUAL

Highest Data Structure
Address 31 24 23 16 15 8 7 0 <=« Bit offset
28
24
20
16
12
8

4

Byte 3 Byte 2 Byte 1 Byte0 | O

4

Byte Offset

Lowest
Address

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

®* Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.

Do not depend on the states of any reserved bits when storing to memory or to a
register.

®* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

NOTE

Avoid any software dependence upon the state of reserved bits in
IA-32 registers. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which
the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

Vol.2A 1-5

ABOUT THIS MANUAL

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly
language is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.

* A mnemonic is a reserved name for a class of instruction opcodes which have
the same function.

®* The operands argumentl, argument2, and argument3 are optional. There may
be from zero to three operands, depending on the opcode. When present, they
take the form of either literals or identifiers for data items. Operand identifiers
are either reserved names of registers or are assumed to be assigned to data
items declared in another part of the program (which may not be shown in the
example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0,1, 2,3,4,5,6,7,8,9,A,B,C,D, E,and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The “"B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes in memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.

1-6 Vol. 2A

ABOUT THIS MANUAL

For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:ElP

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a new syntax to represent this information. See Figure 1-2.

Vol.2A 1-7

ABOUT THIS MANUAL

CPUID Input and Output
CPUID.01H:ECX.SSE [bit 25] = 1

Some inputs require values in EAX and ECX.

This is represented as CPUID.(EAX=n, ECX=n).
If only one value is present, EAX is implied.

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values
CR4.0SFXSR[bit 9] = 1

Example CR name i
Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values
IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)
Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed on-line at:

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

1-8 Vol. 2A

http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

ABOUT THIS MANUAL

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:

The data sheet for a particular Intel 64 or IA-32 processor
The specification update for a particular Intel 64 or IA-32 processor

Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

Intel® VTune™ Performance Analyzer documentation and online help:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five
volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Intel® 64 and IA-32 Architectures Optimization Reference Manual:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html

Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf
Intel 64 Architecture x2APIC Specification:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-
architecture-x2apic-specification.html

Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-
software-development-guide.html

Intel® SSE4 Programming Reference:
http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 programming
reference

Developing Multi-threaded Applications: A Platform Consistent Approach:
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.
pdf

Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-
pentiumr-4-processor-and-intel-xeonr-processor/

Vol.2A 1-9

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm

ABOUT THIS MANUAL

Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:

Software network link:
http://softwarecommunity.intel.com/isn/home/

Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
Processor support general link:
http://www.intel.com/support/processors/

Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html.html

Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore
Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm

1-10 Vol.2A

http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors.
The instruction format for protected mode, real-address mode and virtual-8086
mode is described in Section 2.1. Increments provided for IA-32e mode and its sub-
modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE,

REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format
shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any
order), primary opcode bytes (up to three bytes), an addressing-form specifier (if
required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

InPsrter]LCJig:(teign Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,0r4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 6 5 32 0 7 65 32 0
Mod ODRS%E R/M Scale | Index Base

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

2.1.1 Instruction Prefixes

Instruction prefixes are divided into four groups, each with a set of allowable prefix
codes. For each instruction, it is only useful to include up to one prefix code from
each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 may be placed in any
order relative to each other.

® Group1l
— Lock and repeat prefixes:

Vol.2A 2-1

INSTRUCTION FORMAT

* LOCK prefix is encoded using FOH

* REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix
applies only to string and input/output instructions. (F2H is also used as a
mandatory prefix for some instructions)

* REP or REPE/REPZ is encoded using F3H. Repeat prefix applies only to
string and input/output instructions.(F3H is also used as a mandatory
prefix for some instructions)

® Group 2
— Segment override prefixes:
* 2EH—CS segment override (use with any branch instruction is reserved)

* 36H—SS segment override prefix (use with any branch instruction is
reserved)

¢ 3EH—DS segment override prefix (use with any branch instruction is
reserved)

* 26H—ES segment override prefix (use with any branch instruction is
reserved)

* 64H—FS segment override prefix (use with any branch instruction is
reserved)

* 65H—GS segment override prefix (use with any branch instruction is
reserved)

— Branch hints:
* 2EH—Branch not taken (used only with Jcc instructions)
* 3EH—Branch taken (used only with Jcc instructions)
® Group3

* Operand-size override prefix is encoded using 66H (66H is also used as a
mandatory prefix for some instructions).

®* Group4
* 67H—Address-size override prefix

The LOCK prefix (FOH) forces an operation that ensures exclusive use of shared
memory in a multiprocessor environment. See “"LOCK—Assert LOCK# Signal Prefix”
in Chapter 3, “Instruction Set Reference, A-L,” for a description of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a
string. Use these prefixes only with string and I/0 instructions (MOVS, CMPS, SCAS,
LODS, STOS, INS, and OUTS). Use of repeat prefixes and/or undefined opcodes with
other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.

Some instructions may use F2H,F3H as a mandatory prefix to express distinct func-
tionality. A mandatory prefix generally should be placed after other optional prefixes
(exception to this is discussed in Section 2.2.1, "REX Prefixes”)

2-2 Vol.2A

INSTRUCTION FORMAT

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about
the most likely code path for a branch. Use these prefixes only with conditional
branch instructions (Jcc). Other use of branch hint prefixes and/or other undefined
opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpre-
dictable behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit
operand sizes. Either size can be the default; use of the prefix selects the non-default
size.

Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte
sequence of primary opcode bytes may use 66H as a mandatory prefix to express
distinct functionality. A mandatory prefix generally should be placed after other
optional prefixes (exception to this is discussed in Section 2.2.1, “"REX Prefixes”)

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and
32-bit addressing. Either size can be the default; the prefix selects the non-default
size. Using this prefix and/or other undefined opcodes when operands for the instruc-
tion do not reside in memory is reserved; such use may cause unpredictable
behavior.

2.1.2 Opcodes

A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is
sometimes encoded in the ModR/M byte. Smaller fields can be defined within the
primary opcode. Such fields define the direction of operation, size of displacements,
register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of:
®* An escape opcode byte OFH as the primary opcode and a second opcode byte, or

®* A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second
opcode byte (same as previous bullet)

For example, CVTDQ2PD consists of the following sequence: F3 OF E6. The first byte
is @ mandatory prefix (it is not considered as a repeat prefix).

Three-byte opcode formats for general-purpose and SIMD instructions consist of:

®* An escape opcode byte OFH as the primary opcode, plus two additional opcode
bytes, or

®* A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two
additional opcode bytes (same as previous bullet)

For example, PHADDW for XMM registers consists of the following sequence: 66 OF
38 01. The first byte is the mandatory prefix.

Valid opcode expressions are defined in Appendix A and Appendix B.

Vol.2A 2-3

INSTRUCTION FORMAT

2.1.3 ModR/M and SIB Bytes

Many instructions that refer to an operand in memory have an addressing-form spec-
ifier byte (called the ModR/M byte) following the primary opcode. The ModR/M byte
contains three fields of information:

®* The mod field combines with the r/m field to form 32 possible values: eight
registers and 24 addressing modes.

®* The reg/opcode field specifies either a register number or three more bits of
opcode information. The purpose of the reg/opcode field is specified in the
primary opcode.

®* The r/m field can specify a register as an operand or it can be combined with the
mod field to encode an addressing mode. Sometimes, certain combinations of
the mod field and the r/m field is used to express opcode information for some
instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB
byte). The base-plus-index and scale-plus-index forms of 32-bit addressing require
the SIB byte. The SIB byte includes the following fields:

®* The scale field specifies the scale factor.

®* The index field specifies the register number of the index register.
®* The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.14 Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following the ModR/M
byte (or the SIB byte if one is present). If a displacement is required; it be 1, 2, or 4
bytes.

If an instruction specifies an immediate operand, the operand always follows any
displacement bytes. An immediate operand can be 1, 2 or 4 bytes.

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

The values and corresponding addressing forms of the ModR/M and SIB bytes are
shown in Table 2-1 through Table 2-3: 16-bit addressing forms specified by the
ModR/M byte are in Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3
shows 32-bit addressing forms specified by the SIB byte. In cases where the
reg/opcode field in the ModR/M byte represents an extended opcode, valid encodings
are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses
that can be assigned to the first operand of an instruction by using the Mod and R/M
fields of the ModR/M byte. The first 24 options provide ways of specifying a memory

2-4 \Vol.2A

INSTRUCTION FORMAT

location; the last eight (Mod = 11B) provide ways of specifying general-purpose,
MMX technology and XMM registers.

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the
Mod and R/M fields required to obtain the effective address listed in the first column.
For example: see the row indicated by Mod = 11B, R/M = 000B. The row identifies
the general-purpose registers EAX, AX or AL; MMX technology register MMO; or XMM
register XMMO. The register used is determined by the opcode byte and the operand-
size attribute.

Now look at the seventh row in either table (labeled “"REG ="). This row specifies the
use of the 3-bit Reg/Opcode field when the field is used to give the location of a
second operand. The second operand must be a general-purpose, MMX technology,
or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along
with the operand-size attribute.

If the instruction does not require a second operand, then the Reg/Opcode field may
be used as an opcode extension. This use is represented by the sixth row in the
tables (labeled “/digit (Opcode)”). Note that values in row six are represented in
decimal form.

The body of Table 2-1 and Table 2-2 (under the label “*Value of ModR/M Byte (in Hexa-
decimal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M
byte (in hexadecimal). Bits 3, 4 and 5 are specified by the column of the table in
which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure
below demonstrates interpretation of one table value.

Mod 11

RM 000
/digit (Opcode); REG= 001

C8H 11001000

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

Vol.2A 2-5

INSTRUCTION FORMAT

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL L DL BL AH CH DH BH
r16(/r) AX X DX BX SP BP1 S| DI
r32(/r) EAX ECX |EDX |EBX |ESP |€BP |ESI €Dl
mm(/r) MMO |MM1 |[MM2 |MM3 |MM4 |[MM5 |MMe | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 | 011 100 | 101 170 |1
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
BX+SI] 00 000 |00 08 10 18 20 28 30 38
BX+DI] 001 |01 09 11 19 21 29 31 39
BP+SlI] 010 |02 0A 12 1A 22 2A 32 3A
BP+DI] 011 |03 0B 13 1B 23 2B 33 3B
SI] 100 |04 0C 14 1C 24 2C 34 3C
DI 101 |05 oD 15 1D 25 2D 35 3D
disp162 110 |06 0€E 16 1€ 26 2E 36 3€
[BX] 111 |07 OF 17 1F 27 2F 37 3F
BX+SI]+disp83 01 000 |40 48 50 58 60 68 70 78
BX+DI]+disp8 001 |41 49 51 59 61 69 71 79
BP+Sl]+disp8 010 |42 4A 52 5A 62 6A 72 7A
BP+DI]+disp8 011 |43 4B 53 5B 63 6B 73 7B
Sl]+disp8 100 |44 4C 54 5C 64 6C 74 7C
DI]+disp8 101 |45 4D 55 5D 65 6D 75 7D
BP]+disp8 110 |46 4€ 56 5€ 66 6€ 76 7€
BX]+disp8 111 |47 4F 57 5F 67 6F 77 7F
BX+SIJ+disp16 10 000 |80 88 90 98 AO A8 BO B8
BX+DI]+disp16 001 |81 89 91 99 Al A9 B1 B9
BP+SI]+disp16 010 |82 8A 92 9A A2 AA | B2 BA
BP+DI]+disp16 011 |83 8B 93 9B A3 AB B3 BB
Sl]+disp16 100 |84 8C 94 9C A4 AC B4 BC
DI]+disp16 101 |85 8D 95 9D A5 AD B5 BD
BP1+disp16 110 |86 8€E 96 9€ A6 AE B6 BE
BX]+disp16 111 |87 8F 97 9F A7 AF B7 BF
EAX/AX/AL/MMO/XMMO | 11 000 |Co c8 DO D8 €0 €8 FO F8
ECX/CX/CL/IMM1/XMM1 001 | C1 C9 D1 D9 €EQ €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 | C2 CA D2 DA €2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 | C3 CB D3 DB €3 EB F3 FB
ESP/SP/AHMM4/XMM4 100 |C4 CC D4 DC €4 €C F4 FC
€BP/BP/CH/MM5/XMM5 101 | C5 CD D5 DD €5 €D F5 FD
€SI/SI/DH/MM6/XMM6 110 | C6 CE D6 DE €6 EE F6 FE
€DI/DI/BH/MM7/XMM7 11 | C7 CF D7 DF €7 EF F7 FF
NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other
effective addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is
added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is
sign-extended and added to the index.

2-6 Vol.2A

Table 2-2. 32-Bit Addressin

INSTRUCTION FORMAT

g Forms with the ModR/M Byte

r8(/r) AL cL DL BL AH CH DH BH
r16(/r) AX X DX BX SP BP Sl DI
r32(/r) EAX | ECX |EDX |EBX |ESP | EBP | ESI)]
mm(/r) MMO |MM1 |MM2 |MM3 |MM4 |MM5 |MM6 |MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 |001 |010 |011 |100 |7101 |110 |111
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
EAX] 00 |000 |00 |08 10 18 |20 |28 30 38
ECX] 001 |01 09 11 19 |21 29 31 39
EDX] 010 |02 0OA |12 1A |22 2A |32 3A
EBX] 011 |03 0B 13 1B |23 2B |33 3B
11 100 |04 |0OC 14 1C 24 | 2C 34 |3C
disp32° 101 |05 oD 15 1D |25 2D |35 3D
[ESI] 110 |06 |OE 16 1€ 26 | 2E 36 3€
[EDI] 111 |07 OF 17 1F 27 2F 37 3F
EAX]+disp83 01 |000 |40 (48 |50 |58 |60 |68 |70 |78
ECX]+disp8 001 |41 49 |51 59 |61 69 |71 79
EDX]+disp8 010 |42 |4A |52 5A |62 6A |72 7A
EBX]+disp8 011 |43 |4B |53 5B |63 6B |73 7B
--][--]+disp8 100 |44 |4C 54 | 5C 64 | 6C 74 | 7C
EBP]+disp8 101 |45 |4D |55 5D |65 6D |75 7D
ESI]+disp8 110 |46 |4E 56 | 5E 66 | 6E 76 | 7€
EDI]+disp8 111 |47 | 4F 57 5F 67 6F 77 7F
EAX]+disp32 10 |[000 |80 |88 |90 |98 |ADO |AB |BO |B8
ECX]J+disp32 001 |81 89 |91 99 | A1l A9 | BI1 B9
EDXJ+disp32 010 |82 |BA |92 9A |A2 |AA |B2 BA
EBX]+disp32 011 |83 |8B |93 98 |A3 |AB |B3 BB
--][--]+disp32 100 |84 |8C 94 | 9C A4 | AC B4 | BC
EBPJ+disp32 101 |85 |8D |95 9D |A5 |AD |B5 |BD
ESI]+disp32 110 |86 |8E 96 | 9E A6 | AE B6 |BE
EDIJ+disp32 111 |87 |8F 97 9F A7 | AF B7 |BF
EAX/AX/AL/MMO/XMMO | 11 | 000 | CO c8 DO |D8 |EO €8 FO F8
ECX/CX/CL/MM/XMMT1 001 |C1 c9 D1 D9 |E1 €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 |C2 CA |D2 |DA |E2 EA |F2 FA
EBX/BX/BL/MM3/XMM3 011 |C3 (B D3 |DB |E3 €B F3 FB
ESP/SP/AH/MM4/XMM4 100 |C4 cC D4 |DC €4 €C F4 FC
EBP/BP/CH/MM5/XMM5 101 | C5 CD D5 |DD |E5 €D F5 FD
€SI/SI/DH/MM6/XMM6 110 | C6 CE D6 |DE €6 EE F6 FE
EDI/DI/BH/MM7/XMM7 111 |7 CF D7 |DF €7 EF F7 FF
NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
General purpose registers used as a base are indicated across the top of the table,
along with corresponding values for the SIB byte’s base field. Table rows in the body

Vol.2A 2-7

INSTRUCTION FORMAT

of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the
scaling factor (determined by SIB byte bits 6 and 7).

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

r32 EAX ECX EDX EBX €SP] €sl]
(In decimal) Base = 0 1 2 3 4 5 6 7
(In binary) Base = 000 001 010 011 100 101 110 111
Scaled Index SS | Index Value of SIB Byte (in Hexadecimal)
EAX] 00 000 |00 01 02 03 04 05 06 07
ECX] 001 |08 09 0A 0B 0C oD 0] OF
EDX] 010 |10 11 12 13 14 15 16 17
EBX] 011 |18 19 1A 1B 1C 1D 1€ 1F
none 100 |20 21 22 23 24 25 26 27
EBP] 101 |28 29 2A 2B 2C 2D 2€ 2F
ESI] 110 |30 31 32 33 34 35 36 37
EDI] 111 |38 39 3A 3B 3C 3D 3€ 3F
EAX*2] 01 000 |40 41 42 43 44 45 46 47
ECX*2] 001 |48 49 4A 4B 4C 4D 4€ 4F
EDX*2] 010 |50 51 52 53 54 55 56 57
EBX*2] 011 |58 59 5A 5B 5C 5D 5€ 5F
none 100 |60 61 62 63 64 65 66 67
EBP*2] 101 |68 69 6A 6B 6C 6D 6€ 6F
ESI*2] 110 |70 71 72 73 74 75 76 77
EDI*2] 111 |78 79 7A 7B 7C 7D 7€ 7F
EAX*4] 10 000 |80 81 82 83 84 85 86 87
ECX*4] 001 |88 89 8A 8B 8C 8D 8E 8F
EDX*4] 010 |90 91 92 93 94 95 96 97
EBX*4] 011 |98 89 9A 9B 9C D 9€ 9F
none 100 | AO Al A2 A3 A4 A5 A6 A7
EBP*4] 101 | A8 A9 AA AB AC AD AE AF
ESI*4] 110 |BO B1 B2 B3 B4 B5 B6 B7
EDI*4] 111 | B8 B9 BA BB BC BD BE BF
EAX*8] 11 000 |cCO C1 c2 c3 C4 c5 C6 c7
ECX*8] 001 |(C8 9 CA (B CC CD CE CF
EDX*8] 010 |DO D1 D2 D3 D4 D5 D6 D7
EBX*8] 011 |D8 D9 DA DB DC DD DE DF
none 100 |EO E1 €2 €3 €4) €6 €7
EBP*8] 101 | €8 €9 EA €B €C €D EE EF
ESI*8] 110 |FO F1 F2 F3 F4 F5 F6 F7
EDI*8] 111 |F8 F9 FA FB FC FD FE FF

NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP]. This provides the following address modes:

MOD bits _ Effective Address

00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

2-8 Vol.2A

INSTRUCTION FORMAT

2.2 IA-32€ MODE

IA-32e mode has two sub-modes. These are:

®* Compatibility Mode. Enables a 64-bit operating system to run most legacy
protected mode software unmodified.

® 64-Bit Mode. Enables a 64-bit operating system to run applications written to
access 64-bit address space.

2.2.1 REX Prefixes

REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
® Specify GPRs and SSE registers.

® Specify 64-bit operand size.

®* Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if
an instruction references one of the extended registers or uses a 64-bit operand. If a
REX prefix is used when it has no meaning, it is ignored.

Only one REX prefix is allowed per instruction. If used, the REX prefix byte must
immediately precede the opcode byte or the escape opcode byte (0OFH). When a REX
prefix is used in conjunction with an instruction containing a mandatory prefix, the
mandatory prefix must come before the REX so the REX prefix can be immediately
preceding the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix
should have REX placed between F3 and OF E6. Other placements are ignored. The
instruction-size limit of 15 bytes still applies to instructions with a REX prefix. See
Figure 2-3.

lgsgf?%s P?gzi(x Opcode ModR/M SIB Displacement Immediate
Grp 1,Grp (optional) 1-,2-,0r 1 byte 1 byte Address Immediate data
2,Grp3, 3-byte (if required) (ifrequired) displacementof of 1,2 0r4
Grp 4 opcode 1,2,0r4bytes bytes or none

(optional)

Figure 2-3. Prefix Ordering in 64-bit Mode

Vol.2A 2-9

INSTRUCTION FORMAT

2.2.1.1 Encoding

Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit
fields in the encoding, depending on the format:

® ModR/M: the reg and r/m fields of the ModR/M byte

®* ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of
the SIB (scale, index, base) byte

® Instructions without ModR/M: the reg field of the opcode

In 64-bit mode, these formats do not change. Bits needed to define fields in the
64-bit context are provided by the addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields

REX prefixes are a set of 16 opcodes that span one row of the opcode map and
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC)
in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same
opcodes represent the instruction prefix REX and are not treated as individual
instructions.

The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode.
INC/DEC functionality is still available using ModR/M forms of the same instructions
(opcodes FF/0 and FF/1).

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7
show examples of REX prefix fields in use. Some combinations of REX prefix fields are
invalid. In such cases, the prefix is ignored. Some additional information follows:

® Setting REX.W can be used to determine the operand size but does not solely
determine operand width. Like the 66H size prefix, 64-bit operand size override
has no effect on byte-specific operations.

® For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is
ignored.

® If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

®* REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control
or debug register. REX.R is ignored when ModR/M specifies other registers or
defines an extended opcode.

® REX.X bit modifies the SIB index field.

® REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it
modifies the opcode reg field used for accessing GPRs.

2-10 Vol. 2A

INSTRUCTION FORMAT

Table 2-4. REX Prefix Fields [BITS: 0100WRXB]

Field Name Bit Position Definition
- 7:4 0100
W 3 0 = Operand size determined by CS.D
1 = 64 Bit Operand Size
R 2 Extension of the ModR/M reg field
1 Extension of the SIB index field
B 0 Extension of the ModR/M r/m field, SIB base field, or
Opcode reg field
ModRM Byte
REX PREFIX Opcode mod reg r/m
O100WROEE #11 rer I‘ol‘)b‘
*]
&Vr‘;‘r' Bbbb
OM17xfig1-3

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

ModRM Byte
REX PREFIX Opcode mod reg r/m
0100WRO0B 11 rrr bbb
| [
‘ H J
i‘"ﬂ! J
Rrrr Bbbb
OM17Xfig1-4

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used

Vol.2A 2-11

INSTRUCTION FORMAT

ModRM Byte SIB Byte
REX PREFIX Opcode mod reg r/m scale index | base
0100WRXB #11 rrr 100 ss XXX bbb
I [
L
LHVV Yy l
Rrrr Xxxx Bbbb

OM17Xfig1-5

Figure 2-6. Memory Addressing With a SIB Byte

REX PREFIX Opcode reg
0100W00B bbb
| | 11
Bbbb
OM17Xfig1-6

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are
encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as regis-
ters 0 through 7. REX prefixes provide an additional addressing capability for byte-
registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special
meaning for register encodings. For some combinations, fields expanded by the REX
prefix are not decoded. Table 2-5 describes how each case behaves.

2-12 Vol. 2A

INSTRUCTION FORMAT

Table 2-5. Special Cases of REX Encodings

ModR/M or | Sub-field Compatibility Compatibility
SIB Encodings Mode Operation | Mode Implications | Additional Implications
ModR/M Byte |mod = 11 SIB byte present. |SIB byte required |REX prefix adds a fourth
/m= for ESP-based bit (b) which is not
b*100(ESP) addressing. decoded (don't care).
SIB byte also required for
R12-based addressing.
ModR/M Byte |mod = 0 Base register not | EBP without a REX prefix adds a fourth
/m = used. displacement must | bit (b) which is not
b*101(EBP) be done using decoded (don't care).
mod = 01 with Using RBP or R13 without
displacement of 0. | displacement must be
done using mod = 01 with
a displacement of 0.
SIB Byte index = Index register not | ESP cannot be used | REX prefix adds a fourth
0100(ESP) used. as an index bit (b) which is decoded.
register. There are no additional
implications. The
expanded index field
allows distinguishing RSP
from R12, therefore R12
can be used as an index.
SIB Byte base = Base register is Base register REX prefix adds a fourth
0101(EBP) unused if depends on mod bit (b) which is not
mod = 0. encoding. decoded.
This requires explicit
displacement to be used
with EBP/RBP or R13.
NOTES:

* Don't care about value of REX.B

2.2.1.3

Displacement

Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The
ModR/M and SIB displacement sizes do not change. They remain 8 bits or 32 bits and
are sign-extended to 64 bits.

2.2.1.4

Direct Memory-Offset MOVs

In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to
specify a 64-bit immediate absolute address. This address is called a moffset. No
prefix is needed to specify this 64-bit memory offset. For these MOV instructions, the

Vol.2A 2-13

INSTRUCTION FORMAT

size of the memory offset follows the address-size default (64 bits in 64-bit mode).
See Table 2-6.

Table 2-6. Direct Memory Offset Form of MOV

Opcode Instruction

AO MOV AL, moffset
Al MOV EAX, moffset
A2 MOV moffset, AL
A3 MOV moffset, EAX

2.2.1.5 Immediates

In 64-bit mode, the typical size of immediate operands remains 32 bits. When the
operand size is 64 bits, the processor sign-extends all immediates to 64 bits prior to
their use.

Support for 64-bit immediate operands is accomplished by expanding the semantics
of the existing move (MOV reg, imm16/32) instructions. These instructions (opcodes
B8H - BFH) move 16-bits or 32-bits of immediate data (depending on the effective
operand size) into a GPR. When the effective operand size is 64 bits, these instruc-
tions can be used to load an immediate into a GPR. A REX prefix is needed to override
the 32-bit default operand size to a 64-bit operand size.

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6 RIP-Relative Addressing

A new addressing form, RIP-relative (relative instruction-pointer) addressing, is
implemented in 64-bit mode. An effective address is formed by adding displacement
to the 64-bit RIP of the next instruction.

In IA-32 architecture and compatibility mode, addressing relative to the instruction
pointer is available only with control-transfer instructions. In 64-bit mode, instruc-
tions that use ModR/M addressing can use RIP-relative addressing. Without RIP-rela-
tive addressing, all ModR/M instruction modes address memory relative to zero.

RIP-relative addressing allows specific ModR/M modes to address memory relative to
the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of
+2GB from the RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative
addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB
encodings. RIP-relative addressing is encoded using a redundant form.

In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to
be RIP+Disp32 rather than displacement-only. See Table 2-7.

2-14 Vol. 2A

INSTRUCTION FORMAT

Table 2-7. RIP-Relative Addressing

ModR/M and SIB Sub-field Compatibility 64-bit Mode | Additional Implications
Encodings Mode Operation | Operation in 64-bit mode
ModR/M mod = 00 Disp32 RIP + Disp32 | Must use SIB form with
Byte normal (zero-based)

r/m =101 (none) displacement addressing

SIB Byte base =101 (none) | if mod =00, Same as None
Disp32 legacy

index = 100 (none)
scale=0,1,2,4

The ModR/M encoding for RIP-relative addressing does not depend on using prefix.
Specifically, the r/m bit field encoding of 101B (used to select RIP-relative
addressing) is not affected by the REX prefix. For example, selecting R13 (REX.B =1,
r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m
field of REX.B combined with ModR/M is not fully decoded. In order to address R13
with no displacement, software must encode R13 + 0 using a 1-byte displacement of
zero.

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The
use of the address-size prefix does not disable RIP-relative addressing. The effect of
the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size

In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do
not need a REX prefix for this operand size). These are:

®* Near branches
* Allinstructions, except far branches, that implicitly reference the RSP

2.2.2 Additional Encodings for Control and Debug Registers

In 64-bit mode, more encodings for control and debug registers are available. The
REX.R bit is used to modify the ModR/M reg field when that field encodes a control or
debug register (see Table 2-4). These encodings enable the processor to address
CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit
mode. CR8 becomes the Task Priority Register (TPR).

In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not imple-
mented. Any attempt to access unimplemented registers results in an invalid-opcode
exception (#UD).

Vol.2A 2-15

INSTRUCTION FORMAT

2.3 INTEL° ADVANCED VECTOR EXTENSIONS (INTEL®
AVX)

Intel AVX instructions are encoded using an encoding scheme that combines prefix
bytes, opcode extension field, operand encoding fields, and vector length encoding
capability into a new prefix, referred to as VEX. In the VEX encoding scheme, the VEX
prefix may be two or three bytes long, depending on the instruction semantics.
Despite the two-byte or three-byte length of the VEX prefix, the VEX encoding format
provides a more compact representation/packing of the components of encoding an
instruction in Intel 64 architecture. The VEX encoding scheme also allows more head-
room for future growth of Intel 64 architecture.

2.3.1 Instruction Format
Instruction encoding using VEX prefix provides several advantages:

® Instruction syntax support for three operands and up-to four operands when
necessary. For example, the third source register used by VBLENDVPD is encoded
using bits 7:4 of the immediate byte.

®* Encoding support for vector length of 128 bits (using XMM registers) and 256 bits
(using YMM registers)

®* Encoding support for instruction syntax of non-destructive source operands.

®* Elimination of escape opcode byte (OFH), SIMD prefix byte (66H, F2H, F3H) via a
compact bit field representation within the VEX prefix.

®* Elimination of the need to use REX prefix to encode the extended half of general-
purpose register sets (R8-R15) for direct register access, memory addressing, or
accessing XMM8-XMM15 (including YMM8-YMM15).

®* Flexible and more compact bit fields are provided in the VEX prefix to retain the
full functionality provided by REX prefix. REX.W, REX.X, REX.B functionalities are
provided in the three-byte VEX prefix only because only a subset of SIMD instruc-
tions need them.

® Extensibility for future instruction extensions without significant instruction
length increase.

Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support.
Legacy instruction without a VEX prefix is fully supported and unchanged. The use of
VEX prefix in an Intel 64 instruction is optional, but a VEX prefix is required for Intel
64 instructions that operate on YMM registers or support three and four operand
syntax. VEX prefix is not a constant-valued, “single-purpose” byte like OFH, 66H,
F2H, F3H in legacy SSE instructions. VEX prefix provides substantially richer capa-
bility than the REX prefix.

2-16 Vol. 2A

INSTRUCTION FORMAT

Bytes 2,3 1 1 0,1 0,1,2,4 0,1

[Prefixes] [VEX] OPCODE| [ModR/M| | [SIB] [DISP] | [[MM]

Figure 2-8. Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

233 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD.

2.3.5 The VEX Prefix

The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or
in the three-byte form (the first byte must be C4H). The two-byte VEX is used mainly
for 128-bit, scalar, and the most common 256-bit AVX instructions; while the three-
byte VEX provides a compact replacement of REX and 3-byte opcode instructions
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it
consists of a number of bit fields providing specific capability, they are shown in
Figure 2-9.

The bit fields of the VEX prefix can be summarized by its functional purposes:

®* Non-destructive source register encoding (applicable to three and four operand
syntax): This is the first source operand in the instruction syntax. It is
represented by the notation, VEX.vvvv. This field is encoded using 1's
complement form (inverted form), i.e. XMM0O/YMMO/RO is encoded as 1111B,
XMM15/YMM15/R15 is encoded as 0000B.

®* \Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0
means vector length is 128 bits wide, L=1 means 256 bit vector. The value of this
field is written as VEX.128 or VEX.256 in this document to distinguish encoded
values of other VEX bit fields.

Vol.2A 2-17

INSTRUCTION FORMAT

® REX prefix functionality: Full REX prefix functionality is provided in the three-byte
form of VEX prefix. However the VEX bit fields providing REX functionality are
encoded using 1's complement form, i.e. XMM0O/YMMO/RO is encoded as 1111B,
XMM15/YMM15/R15 is encoded as 0000B.

— Two-byte form of the VEX prefix only provides the equivalent functionality of
REX.R, using 1's complement encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality
using 1's complement encoding and three dedicated bit fields represented as
VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to
specific instructions that need to override default 32-bit operand size for a
general purpose register to 64-bit size in 64-bit mode. For those applicable
instructions, VEX.W field provides the same functionality as REX.W. VEX.W
field can provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not
allowed. However, the intent of the REX prefix for expanding register set is
reserved for future instruction set extensions using VEX prefix encoding format.

® Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD
prefixes (66H, F2H, F3H) as an opcode extension field. VEX prefix encoding
allows the functional capability of such legacy SSE instructions (operating on
XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded
using the VEX.pp field without the presence of any SIMD prefix. The VEX-encoded
128-bit instruction will zero-out bits 255:128 of the destination register. VEX-
encoded instruction may have 128 bit vector length or 256 bits length.

® Compaction of two-byte and three-byte opcode: More recently introduced legacy
SSE instructions employ two and three-byte opcode. The one or two leading
bytes are: OFH, and OFH 3AH/0FH 38H. The one-byte escape (0FH) and two-byte
escape (OFH 3AH, OFH 38H) can also be interpreted as an opcode extension field.
The VEX.mmmmm field provides compaction to allow many legacy instruction to
be encoded without the constant byte sequence, OFH, OFH 3AH, OFH 38H. These
VEX-encoded instruction may have 128 bit vector length or 256 bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode
bytes. It must follow any other prefixes. If VEX prefix is present a REX prefix is not
supported.

The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the
66h/F2h/F3h prefixes are reclaimed for future use.

VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be
encoded using the two-byte form, it can also be encoded using the three byte form of
VEX. The latter increases the length of the instruction by one byte. This may be
helpful in some situations for code alignment.

The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and
SSE4 instructions. Note, certain new instruction functionality can only be encoded
with the VEX prefix.

2-18 Vol. 2A

INSTRUCTION FORMAT

The VEX prefix will #UD on any instruction containing MMX register sources or desti-
nations.

Byte 0 Byte 1 Byte 2
(Bit Position) 7 0 7654 0 7 6 3210
3-byte VEX 11000100 RXB| m-mmmm wW| ww |L|pp
7 07 6 3210
2-byte VEX 11000101 R ww [L| pp

R: REX.R in 1’s complement (inverted) form
1: Same as REX.R=0 (must be 1 in 32-bit mode)
0: Same as REX.R=1 (64-bit mode only)
X: REX.X in 1’s complement (inverted) form
1: Same as REX.X=0 (must be 1 in 32-bit mode)
0: Same as REX.X=1 (64-bit mode only)
B: REX.B in 1’s complement (inverted) form
1: Same as REX.B=0 (Ignored in 32-bit mode).
0: Same as REX.B=1 (64-bit mode only)
W: opcode specific (use like REX.W, or used for opcode
extension, or ignored, depending on the opcode byte)

m-mmmm:
00000: Reserved for future use (will #UD)
00001: implied OF leading opcode byte
00010: implied OF 38 leading opcode bytes
00011: implied OF 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

L: Vector Length

0: scalar or 128-bit vector
1: 256-bit vector

pp: opcode extension providing equivalent functionality of a SIMD prefix
00: None
01: 66
10: F3
11: F2

Figure 2-9. VEX bitfields

Vol.2A 2-19

INSTRUCTION FORMAT

The following subsections describe the various fields in two or three-byte VEX prefix:

2.35.1 VEXByte 0, bits[7:0]

VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b
(C4h). The 3-byte VEX uses the C4h first byte, while the 2-byte VEX uses the C5h
first byte.

2352 VEXByte 1, bit[7]- R’

VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and
compatibility modes the bit must be set to '1’ otherwise the instruction is LES or LDS.

This bit is present in both 2- and 3-byte VEX prefixes.

The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2
of Intel 64 and IA-32 Architectures Software developer’s manual, Volume 2A.

This bit is stored in bit inverted format.

2.35.3 3-byte VEX byte 1, bit[6] - X’

Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is
an extension of the SIB Index field in 64-bit modes. In 32-bit modes, this bit must be
set to ‘1’ otherwise the instruction is LES or LDS.

This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2354 3-byte VEX byte 1, bit[5] - ‘B’
Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In

64-bit modes, it is an extension of the ModR/M r/m field, or the SIB base field. In 32-
bit modes, this bit is ignored.

This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.35.5 3-byte VEX byte 2, bit[7] - ‘W'

Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide

following functions, depending on the specific opcode.

e For AVX instructions that have equivalent legacy SSE instructions (typically
these SSE instructions have a general-purpose register operand with its oper-
and size attribute promotable by REX.W), if REX.W promotes the operand size
attribute of the general-purpose register operand in legacy SSE instruction,
VEX.W has same meaning in the corresponding AVX equivalent form. In 32-bit
modes, VEX.W is silently ignored.

2-20 Vol. 2A

INSTRUCTION FORMAT

e For AVX instructions that have equivalent legacy SSE instructions (typically
these SSE instructions have operands with their operand size attribute fixed and
not promotable by REX.W), if REX.W is don’t care in legacy SSE instruction,
VEX.W is ighored in the corresponding AVX equivalent form irrespective of
mode.

e For new AVX instructions where VEX.W has no defined function (typically these
meant the combination of the opcode byte and VEX.mmmmm did not have any
equivalent SSE functions), VEX.W is reserved as zero and setting to other than
zero will cause instruction to #UD.

2.3.5.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]-
‘'vwvv' the Source or dest Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions.
To maintain compatibility with existing programs the VEX 2nd byte, bits [7:6] must

be 11b. To achieve this, the VEX payload bits are selected to place only inverted, 64-
bit valid fields (extended register selectors) in these upper bits.

The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a
field (shorthand VEX.vvvv) that for instructions with 2 or more source registers and
an XMM or YMM or memory destination encodes the first source register specifier
stored in inverted (1's complement) form.

VEX.vvvv is not used by the instructions with one source (except certain shifts, see
below) or on instructions with no XMM or YMM or memory destination. If an instruc-
tion does not use VEX.vvvv then it should be set to 1111b otherwise instruction will
#UD.

In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or
YMM registers. In 32-bit and 16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte
VEX version will generate LDS instruction and the 3-byte VEX version will ignore this
bit).

Vol.2A 2-21

INSTRUCTION FORMAT

Table 2-8. VEX.vvvv to register name mapping

. Valid in Legacy/Compatibilit
VEX.vvvv Dest Register 32?bi tymo de.f? y
1111B XMMO/YMMO Valid
1110B XMM1/YMM1 Valid
1101B XMM2/YMM2 Valid
1100B XMM3/YMM3 Valid
1011B XMM4/YMM4 Valid
1010B XMM5/YMM5 Valid
1001B XMM6/YMM6 Valid
1000B XMM7/YMM7 Valid
0111B XMM8/YMM8 Invalid
0110B XMM9/YMM9 Invalid
0101B XMM10/YMM10 Invalid
0100B XMM11/YMM11 Invalid
0011B XMM12/YMM12 Invalid
0010B XMM13/YMM13 Invalid
0001B XMM14/YMM14 Invalid
0000B XMM15/YMM15 Invalid

The VEX.vvvv field is encoded in bit inverted format for accessing a register oper-
and.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M

VEX-encoded instructions support three-operand and four-operand instruction
syntax. Some VEX-encoded instructions have syntax with less than three operands,
e.g. VEX-encoded pack shift instructions support one source operand and one desti-
nation operand).

The roles of VEX.vvvy, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M
byte (ModR/M.r/m) with respect to encoding destination and source operands vary
with different type of instruction syntax.

The role of VEX.vvvv can be summarized to three situations:

®* VEX.vvvv encodes the first source register operand, specified in inverted (1's
complement) form and is valid for instructions with 2 or more source operands.

®* VEX.vvvv encodes the destination register operand, specified in 1’s complement
form for certain vector shifts. The instructions where VEX.vvvv is used as a
destination are listed in Table 2-9. The notation in the "Opcode” column in
Table 2-9 is described in detail in section 3.1.1.

2-22 Vol. 2A

INSTRUCTION FORMAT

®* VEX.vvvv does not encode any operand, the field is reserved and should contain
1111b.

Table 2-9. Instructions with a VEX.vvvv destination

Opcode Instruction mnemonic
VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8
VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8
VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmmz2, imm8
VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8
VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8

The role of ModR/M.r/m field can be summarized to two situations:
® ModR/M.r/m encodes the instruction operand that references a memory address.

® For some instructions that do not support memory addressing semantics,
ModR/M.r/m encodes either the destination register operand or a source register
operand.

The role of ModR/M.reg field can be summarized to two situations:

®* ModR/M.reg encodes either the destination register operand or a source register
operand.

® For some instructions, ModR/M.reg is treated as an opcode extension and not
used to encode any instruction operand.

For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m,
ModR/M.reg encodes three of the four operands. The role of bits 7:4 of the imme-
diate byte serves the following situation:

® Imm8[7:4] encodes the third source register operand.

2.3.6.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm"

Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (OF, OF 38,
or OF 3A). Several bits are reserved for future use and will #UD unless 0.

Vol.2A 2-23

INSTRUCTION FORMAT

Table 2-10. VEX.m-mmmm interpretation

Implied Leadin
VEX.m-mmmm Ogco de Bytesg
00000B Reserved
00001B OF
00010B OF 38
00011B OF 3A
00100-11111B Reserved
(2-byte VEX) OF

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading
OFh opcode byte.

2.3.6.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L"

The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte
VEX, or the third byte of 3-byte VEX. If "VEX.L = 1", it indicates 256-bit vector oper-
ation. "VEX.L = 0” indicates scalar and 128-bit vector operations.

The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0,
although its operation zero’s bits 255:128 of all YMM registers accessible in the
current operating mode.

See the following table.

Table 2-11. VEX.L interpretation

VEX.L Vector Length
0 128-bit (or 32/64-bit scalar)
1 256-bit

2.3.6.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]-
llppll

Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the
3-byte VEX byte 2. The prefix behaves as if it was encoded prior to VEX, but after all
other encoded prefixes.

See the following table.

2-24 Vol. 2A

INSTRUCTION FORMAT

Table 2-12. VEX.pp interpretation

Implies this prefix after other
pp prefixes but before VEX
00B None
01B 66
10B F3
11B F2

2.3.7 The Opcode Byte

One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are spec-
ified in Appendix B, in color. Any instruction that uses illegal opcode will #UD.

2.3.8 The MODRM, SIB, and Displacement Bytes

The encodings are unchanged but the interpretation of reg_field or rm_field differs
(see above).

2.3.9 The Third Source Operand (Immediate Byte)

VEX-encoded instructions can support instruction with a four operand syntax.
VBLENDVPD, VBLENDVPS, and PBLENDVB use imm8[7:4] to encode one of the
source registers.

2.3.10 AVX Instructions and the Upper 128-bits of YMM registers

If an instruction with a destination XMM register is encoded with a VEX prefix, the
processor zeroes the upper bits (above bit 128) of the equivalent YMM register .
Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1 Vector Length Transition and Programming Considerations

An instruction encoded with a VEX.128 prefix that loads a YMM register operand
operates as follows:

®* Datais loaded into bits 127:0 of the register
® Bits above bit 127 in the register are cleared.

Thus, such an instruction clears bits 255:128 of a destination YMM register on
processors with a maximum vector-register width of 256 bits. In the event that
future processors extend the vector registers to greater widths, an instruction
encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255.

Vol.2A 2-25

INSTRUCTION FORMAT

(This is in contrast with legacy SSE instructions, which have no VEX prefix; these
modify only bits 127:0 of any destination register operand.)

Programmers should bear in mind that instructions encoded with VEX.128 and
VEX.256 prefixes will clear any future extensions to the vector registers. A calling
function that uses such extensions should save their state before calling legacy func-
tions. This is not possible for involuntary calls (e.g., into an interrupt-service
routine). It is recommended that software handling involuntary calls accommodate
this by not executing instructions encoded with VEX.128 and VEX.256 prefixes. In
the event that it is not possible or desirable to restrict these instructions, then soft-
ware must take special care to avoid actions that would, on future processors, zero
the upper bits of vector registers.

Processors that support further vector-register extensions (defining bits beyond bit
255) will also extend the XSAVE and XRSTOR instructions to save and restore these
extensions. To ensure forward compatibility, software that handles involuntary calls
and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first
save and then restore the vector registers (with any extensions) using the XSAVE
and XRSTOR instructions with save/restore masks that set bits that correspond to all
vector-register extensions. Ideally, software should rely on a mechanism that is
cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore
mask bits for all vector-register extensions that are enabled in XCR0.) Saving and
restoring state with instructions other than XSAVE and XRSTOR will, on future
processors with wider vector registers, corrupt the extended state of the vector
registers - even if doing so functions correctly on processors supporting 256-bit
vector registers. (The same is true if XSAVE and XRSTOR are used with a
save/restore mask that does not set bits corresponding to all supported extensions to
the vector registers.)

2.3.11 AVXInstruction Length

The AVX instructions described in this document (including VEX and ignoring other
prefixes) do not exceed 11 bytes in length, but may increase in the future. The
maximum length of an Intel 64 and IA-32 instruction remains 15 bytes.

2.4 INSTRUCTION EXCEPTION SPECIFICATION

To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded
instructions, and 256-bit VEX-encoded instruction, Table 2-13 summarizes the
exception behavior into separate classes, with detailed exception conditions defined
in sub-sections 2.4.1 through 2.4.8. For example, ADDPS contains the entry:

“"See Exceptions Type 2”
In this entry, "Type2” can be looked up in Table 2-13.

The instruction’s corresponding CPUID feature flag can be identified in the fourth
column of the Instruction summary table.

2-26 Vol. 2A

INSTRUCTION FORMAT

Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment
if the hardware supports the feature flag.

NOTE

Instructions that operate only with MMX, X87, or general-purpose
registers are not covered by the exception classes defined in this
section. For instructions that operate on MMX registers, see Section
22.25.3, “Exception Conditions of Legacy SIMD Instructions
Operating on MMX Registers” in the Inte/l® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.

Table 2-13. Exception class description

Floating-Point
Exception Class Instruction set Mem arg Exceptions
(#XM)
Tvpe T AVX, 16/32 byte none
yp Legacy SSE explicitly aligned
Tvpe 2 AVX, 16/32 byte not os
yp Legacy SSE explicitly aligned y
AVX,
Type 3 Legacy SSE <16 byte yes
Tvpe 4 AVX, 16/32 byte not no
yp Legacy SSE explicitly aligned
AVX,
Type 5 Legacy SSE <16 byte no
AVX (no Legacy . (At present,
Type 6 SSE) Varies none do)
Type 7 AVX, none none
yp Legacy SSE
Type 8 AVX none none

See Table 2-14 for lists of instructions in each exception class.

Vol.2A 2-27

INSTRUCTION FORMAT

Table 2-14. Instructions in each Exception Class

Exception Class

Instruction

Type 1

JMOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA,
JMOVNTPD, (V)MOVNTPS

Type 2

)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS,
)CVTDQ2PS, (V)CVTPD2DQ, (V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ,
JCVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*, (V)HADDPD,
HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS, (V)MINPD,
MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPD, (V)ROUNDPS, (V)SQRTPD,
SQRTPS, (V)SUBPD, (V/)SUBPS

Type 3

ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS,
CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS, (V)CVTSI2SD, (V)CVTSIZSS,
CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2S!, (V)DIVSD,
DIVSS, (V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS,
ROUNDSD, (V)ROUNDSS, (V)SQRTSD, (V)SQRTSS, (V)SUBSD, (V)SUBSS,
UCOMISD, (V)UCOMISS

Type 4

)

)

)

)

)

)

)

)

)

)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC,
JAESKEYGENASSIST, (V)ANDPD, (V)ANDPS, (V)ANDNPD, (V)ANDNPS,
JBLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU,
JMASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU?*,
JMOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*, (V)MOVUPS*, (V)MPSADBW,
JORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB,
JPACKSSDW, (V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW,
)PADDD, (V)PADDAQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW,
JPALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVSB,
JPBLENDW, (V)PCMP(E/STRI/M, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD,
JPCMPEQQ, (V)PCMPGTB, (V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ,
JPCLMULQDAQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, (V)PHMINPOSUW,
JPHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW,

)
)
)
)
)
)
)
)
)
)
)
)

PMAXSB, (V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW,

PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD, (V)PMINUB, (V)PMINUW,
PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW,
PMULLD, (V)PMULUDQ, (V)PMULDAQ, (V)POR, (V)PSADBW, (V)PSHUFB,
PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB, (V)PSIGNW, (V)PSIGND,
PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD,
PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBAQ, (V)PSUBSB,
PSUBSW, (V)PUNPCKHBW, (V)PUNPCKHWD, (V)PUNPCKHDQ,
PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ,
PUNPCKLQDAQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS,
UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD,

(v
)
(v
v
(v
v
v
v
)
v
v
(v
(v
(v
v
(v
)
(v
(v
v
(v
(v
)
(v
v
v
(v
v
v
(v
(v
)
)
v
(v
v
(v
)
(V)XORPS

2-28 Vol. 2A

INSTRUCTION FORMAT

Exception Class Instruction

V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ,
\)MOVDDUP, (V)MOVLPD, (V)MOVLPS, (V)MOVHPD, (V)MOVHPS, (V)MOVSD,
Type 5 (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX,
VLDMXCSR*, VSTMXCSR

—_——

VEXTRACTF128, VPERMILPD, VPERMILPS, VPERM2F128, VBROADCASTSS,

Type 6 VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS**,
VMASKMOVPD**
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKG,

Type 7 (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW,
(V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

(*) - Additional exception restrictions are present - see the Instruction description
for details

(**) - Instruction behavior on alignment check reporting with mask bits of less than
all 1s are the same as with mask bits of all 1s, i.e. no alignment checks are per-
formed.

Table 2-14 classifies exception behaviors for AVX instructions. Within each class of
exception conditions that are listed in Table 2-17 through Table 2-24, certain subsets
of AVX instructions may be subject to #UD exception depending on the encoded
value of the VEX.L field. Table 2-16 provides supplemental information of AVX
instructions that may be subject to #UD exception if encoded with incorrect values in
the VEX.W or VEX.L field.

Table 2-15. #UD Exception and VEX.W=1 Encoding

Exception Class #UD If VEX.W = 1 in all modes H#UD I VEX.W = 1 in
non-64-bit modes

Type 1

Type 2

Type 3

VBLENDVPD, VBLENDVPS, VPBLENDVB,

Type 4 VTESTPD, VTESTPS

Type 5 VPEXTRQ, VPINSRQ,

VEXTRACTF128, VPERMILPD, VPERMILPS,
VPERM2F128, VBROADCASTSS, VBROADCASTSD,

Type & VBROADCASTF128, VINSERTF128,
VMASKMOVPS, VMASKMOVPD

Type 7

Type 8

Vol.2A 2-29

INSTRUCTION FORMAT

Table 2-16. #UD Exception and VEX.L Field Encoding

Exception Class #UDIfVEX.L=0

#UDIf VEX.L =1

Type 1

VMOVNTDQA

Type 2

VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D,
VPACKSSWB/DW, VPACKUSWB/DW,
VVPADDB/W/D, VPADDQ, VPADDSB/W,
VPADDUSB/W, VPALIGNR, VPAND, VPANDN,
VPAVGB/W, VPBLENDVB, VPBLENDW,
VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q,
VPCMPGTB/W/D/Q, VPHADDW/D, VPHADDSW,
VPHMINPOSUW, VPHSUBD/W, VPHSUBSW,
VPMADDWD, VPMADDUBSW, VPMAXSB/W/D,
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D,
VPMULHUW, VPMULHRSW, VPMULHW/LW,
VPMULLD, VPMULUDQ, VPMULDQ, VPOR,
VPSADBW, VPSHUFB/D, VPSHUFHW/LW,
VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D,
VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W,
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ,
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ,
VMOVLPD, VMOVLPS, VMOVHPD, VMOVHPS,
VPEXTRB, VPEXTRD, VPEXTRW, VPEXTRQ,
VPINSRB, VPINSRD, VPINSRW, VPINSRQ,
VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

VEXTRACTF128,
VPERM2F128,
Type 6 VBROADCASTSD,
VBROADCASTF128,
VINSERTF128,

Type 7

VMOVLHPS, VMOVHLPS, VPMOVMSKB,
VPSLLDQ, VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ,
VPSRAW, VPSRAD, VPSRLW, VPSRLD, VPSRLQ

Type 8

2-30 Vol.2A

INSTRUCTION FORMAT

2.4.1 Exceptions Type 1 (Aligned memory reference)

Table 2-17. Type 1 Class Exception Conditions

Exception

Real

Protected and
Compatibility

64-bit

Cause of Exception

Invalid Opcode,
#UD

>

x| Virtual 80x86

VEX prefix.

VEX prefix:
If XCRO[2:1]!="11D.
If CR4.0SXSAVE[bit 18]=0.

Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a VEX
prefix.

If any corresponding CPUID feature flag is ‘0.

Device Not Avail-
able, #\NM

X | X| X | X

If CRO.TS[bit 3]=1.

Stack, SS(0)

x| X | X X | X

For an illegal address in the SS segment.

If a memory address referencing the SS segment
is in a non-canonical form.

General Protec-
tion, #GP(0)

VEX.256: Memory operand is not 32-byte
aligned.
VEX.128: Memory operand is not 16-byte
aligned.

Legacy SSE: Memory operand is not 16-byte
aligned.

For an illegal memory operand effective address
in the CS, DS, ES, FS or GS segments.

If the memory address is in a non-canonical form.

If any part of the operand lies outside the effec-
tive address space from O to FFFFH.

Page Fault
#PF(fault-code)

For a page fault.

Vol.2A 2-31

INSTRUCTION FORMAT

2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference,
Unaligned)
Table 2-18. Type 2 Class Exception Conditions
s 3z
— 8 Do | Xk
Exception | =5 2% 2 Cause of Exception
| S 823
E |8 E
S £8
X X VEX prefix.
X X X X If an unmasked SIMD floating-point exception and
CR4.0SXMMEXCPT[bit 10] = 0.
VEX prefix:
X X | f XCRO[2:1]}="11D.
) If CR4.0SXSAVE[bit 18]=0.
z‘l\JlaD"d Opcode, Legacy SSE instruction:
X X X X | If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
X X X X | If preceded by a LOCK prefix (FOH).
X X If any REX, F2, F3, or 66 prefixes precede a VEX
prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Avail- o
able, #NM X X X X | If CRO.TS[bit 3]=1.
X For an illegal address in the SS segment.
Stack, SS(0) x| famemory address referencing the SS segment is
in @ non-canonical form.
X X X X ngacy SSE: Memory operand is not 16-byte
aligned.
X For an illegal memory operand effective address in
General Protec- the CS, DS, €S, FS or GS segments.
tion, #GP(0) — .
X | If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault
#PF(fault-code) X X X | For a page fault.
SIMD Floating- . . .
noint Exception, X X X X If an unmasked SIMD floating-point exception and

#XM

CR4.0SXMMEXCPTI[bit 10] = 1.

2-32 Vol. 2A

2.4.3

INSTRUCTION FORMAT

Exceptions Type 3 (<16 Byte memory argument)

Table 2-19. Type 3 Class Exception Conditions

Exception

Real

Protected and

Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

>

VEX prefix.

< | x| Virtual 80x86

If an unmasked SIMD floating-point exception
and CR4.0SXMMEXCPT[bit 10] = 0.

VEX prefix:
If XCRO[2:1]!="11D..
If CR4.0SXSAVE[bit 18]=0.

Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a
VEX prefix.

If any corresponding CPUID feature flag is ‘0.

Device Not Available,
#NM

X | X| X | X

If CRO.TS[bit 3]=1.

Stack, SS(0)

X X | X X | X

For an illegal address in the SS segment.

If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection,
#GP(0)

For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

If the memory address is in a non-canonical
form.

If any part of the operand lies outside the
effective address space from O to FFFFH.

Page Fault
#PF(fault-code)

For a page fault.

Alignment Check
#AC(0)

If alignment checking is enabled and an
unaligned memory reference is made while
the current privilege level is 3.

SIMD Floating-point
Exception, #XM

If an unmasked SIMD floating-point exception
and CR4.0SXMMEXCPT[bit 10] = 1.

Vol.2A 2-33

INSTRUCTION FORMAT

244 Exceptions Type 4 (>=16 Byte mem arg no alignment, no

floating-point exceptions)

Table 2-20. Type 4 Class Exception Conditions

Exception

Real

Protected and
Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

x| Virtual 80x86

VEX prefix.

VEX prefix:
If XCRO[2:1]!="11D".
If CR4.0SXSAVE[bit 18]=0.

Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a
VEX prefix.

If any corresponding CPUID feature flag is ‘0"

Device Not Available,
#NM

X | X| X | X

If CRO.TS[bit 3]=1.

Stack, SS(0)

X| X | X| X | X

For an illegal address in the SS segment.

If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection,
#GP(0)

Legacy SSE: Memory operand is not 16-byte
aligned.

For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

If the memory address is in a non-canonical
form.

If any part of the operand lies outside the
effective address space from O to FFFFH.

Page Fault
#PF(fault-code)

For a page fault.

2-34 Vol. 2A

2.4.5

Table 2-21

INSTRUCTION FORMAT

Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

. Type 5 Class Exception Conditions

Exception

Real

Protected and
Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

>

x| Virtual 80x86

VEX prefix.

VEX prefix:
If XCRO[2:1]!="11D".
If CR4.0SXSAVE[bit 18]=0.

Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a
VEX prefix.

If any corresponding CPUID feature flag is ‘0.

Device Not Available,

#NM

X | X| X | X

If CRO.TS[bit 3]=1.

Stack, SS(0)

X X | X X | X

For an illegal address in the SS segment.

If a memory address referencing the SS seg-
ment is in a non-canonical form.

General Protection,
#GP(0)

For an illegal memory operand effective
address in the CS, DS, €S, FS or GS segments.

If the memory address is in a non-canonical
form.

If any part of the operand lies outside the
effective address space from O to FFFFH.

Page Fault
#PF(fault-code)

For a page fault.

Alignment Check
#AC(0)

If alignment checking is enabled and an
unaligned memory reference is made while
the current privilege level is 3.

Vol.2A 2-35

INSTRUCTION FORMAT

2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without
Legacy SSE Analogues)

Note: At present, the AVX instructions in this category do not generate floating-point

exceptions.
Table 2-22. Type 6 Class Exception Conditions
g 2z
X 0 =
; T & B2 B ,
Exception 2 = E D $ Cause of Exception
2 |2 E
= © 0o
> av
X X VEX prefix.
X X If XCRO[2:1]="11D..
If CR4.0SXSAVE[bit 18]=0.
Invalid Opcode, #UD X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a
X X :
VEX prefix.
X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, ol
#NM X X | If CRO.TS[bit 3]=1.
X For an illegal address in the SS segment.
Stack, SS(0) x| Ifamemory address referencing the SS seg-
ment is in a non-canonical form.
X For an illegal memory operand effective
General Protection, address in the CS, DS, ES, FS or GS segments.
#GP(0) w | If the memory address is in a non-canonical
form.
Page Fault
#PF(fault-code) X X | For a page fault.
For 4 or 8 byte memory references if align-
Alignment Check X X ment checking is enabled and an unaligned
#AC(0) memory reference is made while the current
privilege level is 3.

2-36 Vol.2A

INSTRUCTION FORMAT

2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-23. Type 7 Class Exception Conditions

8 B2
X 0=
, T | & B2 5 ,
Exception 2 = E B3 Cause of Exception
= - 1o}
= o
> avY
X X VEX prefix.
VEX prefix:

X X | f XCRO[2:1]}="11D.
If CR4.0SXSAVE[bit 18]=0.
Legacy SSE instruction:

Invalid Opcode, #UD X X X X | If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

X X X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a
X X :
VEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, X X | If CRO.TS[bit 3]=1.

#NM

Vol.2A 2-37

INSTRUCTION FORMAT

2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-24. Type 8 Class Exception Conditions
- 5 | 8 B2 B ,
Exception 2 = g B 3 Cause of Exception
=} = E (Te]
© O o
5 |gv
Invalid Opcode, #UD | X X Always in Real or Virtual 80x86 mode.
X X If XCRO[2:1]}="11Db",
If CR4.0SXSAVE[bit 18]=0.
If CPUID.OTH.ECX.AVX[bit 28]=0.
If VEX.vvwv 1= 1111B.
X X X X If proceeded by a LOCK prefix (FOH).
Device Not Available, X X If CRO.TS[bit 3]=1.
#NM

2-38 Vol. 2A

CHAPTER 3
INSTRUCTION SET REFERENCE, A-L

This chapter describes the instruction set for the Intel 64 and IA-32 architectures
(A-L) in IA-32e, protected, virtual-8086, and real-address modes of operation. The
set includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3/SSE4,
AESNI/PCLMULQDQ, AVX and system instructions. See also Chapter 4, “Instruction
Set Reference, M-Z,” in the Intel/® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

For each instruction, each operand combination is described. A description of the
instruction and its operand, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of exceptions that
can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE
PAGES

This section describes the format of information contained in the instruction refer-
ence pages in this chapter. It explains notational conventions and abbreviations used
in these sections.

3.1.1 Instruction Format

The following is an example of the format used for each instruction description in this
chapter. The heading below introduces the example. The table below provides an
example summary table.

CMC—Complement Carry Flag [this is an example]

Opcode Instruction Op/En 64/32-bit CPUID Description
Mode Feature Flag
F5 CMC A VIV NP Complement carry flag.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Vol.2A 3-1

INSTRUCTION SET REFERENCE, A-L

3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions

without VEX prefix)

The “Opcode” column in the table above shows the object code produced for each
form of the instruction. When possible, codes are given as hexadecimal bytes in the
same order in which they appear in memory. Definitions of entries other than hexa-
decimal bytes are as follows:

REX.W — Indicates the use of a REX prefix that affects operand size or
instruction semantics. The ordering of the REX prefix and other
optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed
explicitly in the opcode column.

/digit — A digit between 0 and 7 indicates that the ModR/M byte of the
instruction uses only the r/m (register or memory) operand. The reg field
contains the digit that provides an extension to the instruction's opcode.

/r — Indicates that the ModR/M byte of the instruction contains a register
operand and an r/m operand.

cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp),
8-byte (co) or 10-byte (ct) value following the opcode. This value is used to
specify a code offset and possibly a new value for the code segment register.

ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate
operand to the instruction that follows the opcode, ModR/M bytes or scale-
indexing bytes. The opcode determines if the operand is a signed value. All
words, doublewords and quadwords are given with the low-order byte first.

+rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.
See Table 3-1 for the codes. The +ro columns in the table are applicable only in
64-bit mode.

+i — A number used in floating-point instructions when one of the operands is
ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is
added to the hexadecimal byte given at the left of the plus sign to form a single
opcode byte.

3-2 Vol.2A

INSTRUCTION SET REFERENCE, A-L

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)
g o 3 |8 @ 3 |8 @ S g @ S
t R ERE OB BERE BB BB OE
g = g e = g @@ = g | [|
AL None 0 AX None 0 EAX None 0 RAX None | O
CL None 1 X None 1 ECX None 1 RCX None 1
DL None 2 DX None 2 EDX None 2 RDX None 2
BL None 3 BX None 3 EBX None 3 RBX None 3
AH Not 4 SP None | 4 ESP None | 4 N/A N/A N/A
encod
able
(N.E)
CH N.E. 5 BP None | 5 EBP None | 5 N/A N/A N/A
DH N.E. 6 S| None | 6 sl None | 6 N/A N/A N/A
BH N.E. 7 DI None | 7 EDI None | 7 N/A N/A N/A
SPL Yes 4 SP None | 4 ESP None 4 RSP None | 4
BPL Yes 5 BP None 5 EBP None 5 RBP None 5
SIL Yes 6 S| None | 6 sl None 6 RSI None | 6
DIL Yes 7 DI None 7 EDI None 7 RDI None 7
Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0
R9L Yes 1 ROW Yes 1 R9D Yes 1 R9 Yes 1
R10L | Yes 2 R10W | Yes 2 R10D Yes 2 R10 Yes 2
R11L | Yes 3 R11W | Yes 3 R11D Yes 3 R11 Yes 3
R12L | Yes 4 R12W | Yes 4 R12D Yes 4 R12 Yes 4
R13L | Yes 5 R13W | Yes 5 R13D Yes 5 R13 Yes 5
R14L | Yes 6 R14W | Yes 6 R14D Yes 6 R14 Yes 6
R15L | Yes 7 R15W | Yes 7 R15D Yes 7 R15 Yes 7

Vol.2A 3-3

INSTRUCTION SET REFERENCE, A-L

3.1.1.2 Opcode Column in the Instruction Summary Table (Instructions
with VEX prefix)

In the Instruction Summary Table, the Opcode column presents each instruction
encoded using the VEX prefix in following form (including the modR/M byte if appli-
cable, the immediate byte if applicable):

VEX.[NDS].[128,256].[66,F2,F3].0F/OF3A/0F38.[W0O,W1] opcode [/r]

[/ib,/is4]

®* VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be
encoded using the three-byte form (the first byte is C4H), or using the two-byte
form (the first byte is C5H). The two-byte form of VEX only applies to those
instructions that do not require the following fields to be encoded:
VEX.mmmmm, VEX.W, VEX.X, VEX.B. Refer to Section 2.3 for more detail on the
VEX prefix.

The encoding of various sub-fields of the VEX prefix is described using the
following notations:

— NDS, NDD, DDS: specifies that VEX.vvvv field is valid for the encoding of a
register operand:

* VEX.NDS: VEX.vvvv encodes the first source register in an instruction
syntax where the content of source registers will be preserved.

e VEX.NDD: VEX.vvvv encodes the destination register that cannot be
encoded by ModR/M:reg field.

* VEX.DDS: VEX.vvvv encodes the second source register in a three-
operand instruction syntax where the content of first source register will
be overwritten by the result.

* If none of NDS, NDD, and DDS is present, VEX.vvvv must be 1111b (i.e.
VEX.vvvv does not encode an operand). The VEX.vvvyv field can be
encoded using either the 2-byte or 3-byte form of the VEX prefix.

— 128,256: VEX.L field can be 0 (denoted by VEX.128 or VEX.LZ) or 1
(denoted by VEX.256). The VEX.L field can be encoded using either the 2-
byte or 3-byte form of the VEX prefix. The presence of the notation VEX.256
or VEX.128 in the opcode column should be interpreted as follows:

* If VEX.256 is present in the opcode column: The semantics of the
instruction must be encoded with VEX.L = 1. An attempt to encode this
instruction with VEX.L= 0 can result in one of two situations: (a) if
VEX.128 version is defined, the processor will behave according to the
defined VEX.128 behavior; (b) an #UD occurs if there is no VEX.128
version defined.

e If VEX.128 is present in the opcode column but there is no VEX.256
version defined for the same opcode byte: Two situations apply: (a) For
VEX-encoded, 128-bit SIMD integer instructions, software must encode
the instruction with VEX.L = 0. The processor will treat the opcode byte
encoded with VEX.L= 1 by causing an #UD exception; (b) For VEX-

3-4 Vol. 2A

INSTRUCTION SET REFERENCE, A-L

encoded, 128-bit packed floating-point instructions, software must
encode the instruction with VEX.L = 0. The processor will treat the opcode
byte encoded with VEX.L= 1 by causing an #UD exception (e.g.
VMOVLPS).

e If VEX.LIG is present in the opcode column: The VEX.L value is ignored.
This generally applies to VEX-encoded scalar SIMD floating-point instruc-
tions. Scalar SIMD floating-point instruction can be distinguished from
the mnemonic of the instruction. Generally, the last two letters of the
instruction mnemonic would be either “"SS", “SD", or “SI" for SIMD
floating-point conversion instructions.

e IfVEX.LZis presentin the opcode column: The VEX.L must be encoded to
be 0B, an #UD occurs if VEX.L is not zero.

66,F2,F3: The presence or absence of these values map to the VEX.pp field
encodings. If absent, this corresponds to VEX.pp=00B. If present, the corre-
sponding VEX.pp value affects the “opcode” byte in the same way as if a
SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-
zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H
prefix. The VEX.pp field may be encoded using either the 2-byte or 3-byte
form of the VEX prefix.

OF,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm
field. Only three encoded values of VEX.mmmmm are defined as valid, corre-
sponding to the escape byte sequence of OFH, OF3AH and OF38H. The effect
of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if
the corresponding escape byte sequence on the ensuing opcode byte for non-
VEX encoded instructions. Thus a valid encoding of VEX.mmmmm may be
consider as an implies escape byte sequence of either OFH, OF3AH or OF38H.
The VEX.mmmmm field must be encoded using the 3-byte form of VEX
prefix.

OF,0F3A,0F38 and 2-byte/3-byte VEX. The presence of OF3A and OF38 in
the opcode column implies that opcode can only be encoded by the three-
byte form of VEX. The presence of OF in the opcode column does not preclude
the opcode to be encoded by the two-byte of VEX if the semantics of the
opcode does not require any subfield of VEX not present in the two-byte form
of the VEX prefix.

WO0: VEX.W=0.
W1: VEX.W=1.

The presence of WO/W1 in the opcode column applies to two situations: (a) it
is treated as an extended opcode bit, (b) the instruction semantics support an
operand size promotion to 64-bit of a general-purpose register operand or a
32-bit memory operand. The presence of W1 in the opcode column implies
the opcode must be encoded using the 3-byte form of the VEX prefix. The
presence of WO in the opcode column does not preclude the opcode to be
encoded using the C5H form of the VEX prefix, if the semantics of the opcode

Vol.2A 3-5

INSTRUCTION SET REFERENCE, A-L

does not require other VEX subfields not present in the two-byte form of the
VEX prefix. Please see Section 2.3 on the subfield definitions within VEX.

— WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is
ignored in the C4H form of VEX prefix.

— If WIG is present, the instruction may be encoded using either the two-byte
form or the three-byte form of VEX. When encoding the instruction using the
three-byte form of VEX, the value of VEX.W is ignored.

®* opcode: Instruction opcode.

* /is4: An 8-bit immediate byte is present containing a source register specifier in
imm[7:4] and instruction-specific payload in imm[3:0].

®* Ingeneral, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in
the opcode column. The encoding scheme of VEX.R, VEX.X, VEX.B fields must
follow the rules defined in Section 2.3.

3.1.1.3 Instruction Column in the Opcode Summary Table

The “Instruction” column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to repre-
sent operands in the instruction statements:

®* rel8 — A relative address in the range from 128 bytes before the end of the
instruction to 127 bytes after the end of the instruction.

®* rell6, rel32 — A relative address within the same code segment as the

instruction assembled. The rel16 symbol applies to instructions with an operand-

size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits.

* ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from
that of the instruction. The notation 16:16 indicates that the value of the pointer
has two parts. The value to the left of the colon is a 16-bit selector or value
destined for the code segment register. The value to the right corresponds to the
offset within the destination segment. The ptr16:16 symbol is used when the
instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when
the operand-size attribute is 32 bits.

* r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH,
BPL, SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when
using REX.R and 64-bit mode.

® r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI;
or one of the word registers (R8-R15) available when using REX.R and 64-bit
mode.

®* r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available
when using REX.R in 64-bit mode.

3-6 Vol.2A

INSTRUCTION SET REFERENCE, A-L

r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, R8-R15. These are available when using REX.R and 64-bit
mode.

imm8 — An immediate byte value. The imm8 symbol is a signed nhumber
between -128 and +127 inclusive. For instructions in which imm8 is combined
with a word or doubleword operand, the immediate value is sign-extended to
form a word or doubleword. The upper byte of the word is filled with the topmost
bit of the immediate value.

imm16 — An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between -32,768 and +32,767 inclusive.

imm32 — An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a nhumber between
+2,147,483,647 and -2,147,483,648 inclusive.

imm64 — An immediate quadword value used for instructions whose
operand-size attribute is 64 bits. The value allows the use of a number
between +9,223,372,036,854,775,807 and -9,223,372,036,854,775,808
inclusive.

r/m8 — A byte operand that is either the contents of a byte general-purpose
register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from
memory. Byte registers R8L - R15L are available using REX.R in 64-bit mode.

r/m16 — A word general-purpose register or memory operand used for instruc-
tions whose operand-size attribute is 16 bits. The word general-purpose registers
are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of memory are found at the
address provided by the effective address computation. Word registers R8W -
R15W are available using REX.R in 64-bit mode.

r/m32 — A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword general-
purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of
memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit
mode.

r/m64 — A quadword general-purpose register or memory operand used for
instructions whose operand-size attribute is 64 bits when using REX.W.
Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP,
RSP, R8-R15; these are available only in 64-bit mode. The contents of memory
are found at the address provided by the effective address computation.

m — A 16-, 32- or 64-bit operand in memory.

m8 — A byte operand in memory, usually expressed as a variable or array hame,
but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed
to by the RSI or RDI registers.

m16 — A word operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.

Vol.2A 3-7

INSTRUCTION SET REFERENCE, A-L

®* m32 — A doubleword operand in memory, usually expressed as a variable or
array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomen-
clature is used only with the string instructions.

®* m64 — A memory quadword operand in memory.
* ml1l28 — A memory double quadword operand in memory.

®* m16:16, m16:32 & m16:64 — A memory operand containing a far pointer
composed of two numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its offset.

* m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of
data item pairs whose sizes are indicated on the left and the right side of the
ampersand. All memory addressing modes are allowed. The m16&16 and
m32&32 operands are used by the BOUND instruction to provide an operand
containing an upper and lower bounds for array indices. The m16&32 operand is
used by LIDT and LGDT to provide a word with which to load the limit field, and a
doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to
provide a word with which to load the limit field, and a quadword with which to
load the base field of the corresponding GDTR and IDTR registers.

* moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory
offset) of type byte, word, or doubleword used by some variants of the MOV
instruction. The actual address is given by a simple offset relative to the segment
base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the
instruction.

® Sreg — A segment register. The segment register bit assignments are ES = 0,
CS=1,85=2,DS=3,FS=4,and GS =5.

* m32fp, m64fp, m80fp — A single-precision, double-precision, and double
extended-precision (respectively) floating-point operand in memory. These
symbols designate floating-point values that are used as operands for x87 FPU
floating-point instructions.

* m16int, m32int, m64int — A word, doubleword, and quadword integer
(respectively) operand in memory. These symbols designate integers that are
used as operands for x87 FPU integer instructions.

® ST or ST(0) — The top element of the FPU register stack.

* ST(i) — The ith element from the top of the FPU register stack (i < 0 through 7).

®* mm — An MMX register. The 64-bit MMX registers are: MMO through MM7.

* mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory
operand. The 64-bit MMX registers are: MMO through MM7. The contents of
memory are found at the address provided by the effective address computation.

* mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX
registers are: MMO through MM7. The contents of memory are found at the
address provided by the effective address computation.

3-8 Vol.2A

INSTRUCTION SET REFERENCE, A-L

xmm — An XMM register. The 128-bit XMM registers are: XMMO through XMM7;
XMM8 through XMM15 are available using REX.R in 64-bit mode.

xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM
registers are XMMO through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD
floating-point registers are XMMO through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMMO through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

<XMMO>— indicates implied use of the XMMO register.

When there is ambiguity, xmm1 indicates the first source operand using an XMM
register and xmm2 the second source operand using an XMM register.

Some instructions use the XMMO register as the third source operand, indicated
by <XMMO0O>. The use of the third XMM register operand is implicit in the instruc-
tion encoding and does not affect the ModR/M encoding.

ymm — a YMM register. The 256-bit YMM registers are: YMMO through YMM7;
YMM8 through YMM15 are available in 64-bit mode.

m256 — A 32-byte operand in memory. This nomenclature is used only with AVX
instructions.

ymm/m256 — a YMM register or 256-bit memory operand.
<YMMO>— indicates use of the YMMO register as an implicit argument.

SRC1 — Denotes the first source operand in the instruction syntax of an
instruction encoded with the VEX prefix and having two or more source operands.

SRC2 — Denotes the second source operand in the instruction syntax of an
instruction encoded with the VEX prefix and having two or more source operands.

SRC3 — Denotes the third source operand in the instruction syntax of an
instruction encoded with the VEX prefix and having three source operands.

SRC — The source in a AVX single-source instruction or the source in a Legacy
SSE instruction.

DST — the destination in a AVX instruction. In Legacy SSE instructions can be
either the destination, first source, or both. This field is encoded by reg_field.

3.1.14 Operand Encoding Column in the Instruction Summary Table

The “operand encoding” column is abbreviated as Op/En in the Instruction Summary
table heading. Instruction operand encoding information is provided for each

Vol.2A 3-9

INSTRUCTION SET REFERENCE, A-L

assembly instruction syntax using a letter to cross reference to a row entry in the
operand encoding definition table that follows the instruction summary table. The
operand encoding table in each instruction reference page lists each instruction
operand (according to each instruction syntax and operand ordering shown in the
instruction column) relative to the ModRM byte, VEX.vvvv field or additional operand
encoding placement.

NOTES

® The letters in the Op/En column of an instruction apply ONLY to
the encoding definition table immediately following the
instruction summary table.

* In the encoding definition table, the letter ‘r’ within a pair of
parenthesis denotes the content of the operand will be read by
the processor. The letter ‘w’ within a pair of parenthesis denotes
the content of the operand will be updated by the processor.

3.1.1.5 64/32-bit Mode Column in the Instruction Summary Table

The “64/32-bit Mode” column indicates whether the opcode sequence is supported in
(a) 64-bit mode or (b) the Compatibility mode and other IA-32 modes that apply in
conjunction with the CPUID feature flag associated specific instruction extensions.

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
® V — Supported.
® I — Not supported.

® N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may
represent part of a sequence of valid instructions in other modes).

®* N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit
mode.

®* N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.

® N.S. — Indicates an instruction syntax that requires an address override prefix in
64-bit mode and is not supported. Using an address override prefix in 64-bit
mode may result in model-specific execution behavior.

The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the fol-
lowing notation:

e V — Supported.
o I — Not supported.

* N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable;
the opcode sequence is not applicable as an individual instruction in compatibility
mode or IA-32 mode. The opcode may represent a valid sequence of legacy IA-32
instructions.

3-10 Vol.2A

INSTRUCTION SET REFERENCE, A-L

3.1.1.6 CPUID Support Column in the Instruction Summary Table

The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bit in
CPUID.1.ECX, CPUID.1.EDX for SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AES-
NI/PCLMULQDQ/AVX/RDRAND support) that indicate processor support for the in-
struction. If the corresponding flag is ‘0’, the instruction will #UD.

3.1.1.7 Description Column in the Instruction Summary Table

The “Description” column briefly explains forms of the instruction.

3.1.1.8 Description Section

Each instruction is then described by number of information sections. The “Descrip-
tion” section describes the purpose of the instructions and required operands in more
detail.

Summary of terms that may be used in the description section:

®* Legacy SSE: Refers to SSE, SSE2, SSE3, SSSE3, SSE4, AESNI, PCLMULQDQ and
any future instruction sets referencing XMM registers and encoded without a VEX
prefix.

®* VEX.vvvv. The VEX bitfield specifying a source or destination register (in 1's
complement form).

* rm_field: shorthand for the ModR/M r/m field and any REX.B
®* reg_field: shorthand for the ModR/M reg field and any REX.R

3.1.1.9 Operation Section

The “Operation” section contains an algorithm description (frequently written in
pseudo-code) for the instruction. Algorithms are composed of the following
elements:

® Comments are enclosed within the symbol pairs “(*” and “*)".

®* Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI
for an if statement; DO and OD for a do statement; or CASE... OF for a case
statement.

®* A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the
address contained in register SI relative to the SI register’s default segment (DS)
or the overridden segment.

® Parentheses around the “"E” in a general-purpose register name, such as (E)SI,
indicates that the offset is read from the SI register if the address-size attribute
is 16, from the ESI register if the address-size attribute is 32. Parentheses

Vol.2A 3-11

INSTRUCTION SET REFERENCE, A-L

around the “"R” in a general-purpose register name, (R)SI, in the presence of a
64-bit register definition such as (R)SI, indicates that the offset is read from the
64-bit RSI register if the address-size attribute is 64.

Brackets are used for memory operands where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates
that the content of the source operand is a segment-relative offset.

A « B indicates that the value of B is assigned to A.

The symbols =, #, >, <, 2, and < are relational operators used to compare two
values: meaning equal, not equal, greater or equal, less or equal, respectively. A
relational expression such as A « B is TRUE if the value of A is equal to B;
otherwise it is FALSE.

The expression "« COUNT” and “» COUNT” indicates that the destination operand
should be shifted left or right by the number of bits indicated by the count
operand.

The following identifiers are used in the algorithmic descriptions:

OperandSize and AddressSize — The OperandSize identifier represents the
operand-size attribute of the instruction, which is 16, 32 or 64-bits. The
AddressSize identifier represents the address-size attribute, which is 16, 32 or
64-bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the MOV instruction used.

IF Instruction < MOVW
THEN OperandSize = 16;
ELSE
IF Instruction < MOVD
THEN OperandSize = 32;
ELSE
IF Instruction < MOVQ
THEN OperandSize = 64;
Fl;
Fl;
Fl;
See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for guidelines
on how these attributes are determined.

StackAddrSize — Represents the stack address-size attribute associated with
the instruction, which has a value of 16, 32 or 64-bits. See “Address-Size
Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

SRC — Represents the source operand.
DEST — Represents the destination operand.

VLMAX — The maximum vector register width pertaining to the instruction. This
is not the vector-length encoding in the instruction's prefix but is instead

3-12 Vol. 2A

INSTRUCTION SET REFERENCE, A-L

determined by the current value of XCRO. For existing processors, VLMAX is 256
whenever XCR0.YMM[bit 2] is 1. Future processors may defined new bits in XCRO
whose setting may imply other values for VLMAX.

VLMAX Definition

XCRO Component VLMAX

XCRO.YMM 256

The following functions are used in the algorithmic descriptions:

ZeroExtend(value) — Returns a value zero-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, zero
extending a byte value of -10 converts the byte from F6H to a doubleword value
of 000000F6H. If the value passed to the ZeroExtend function and the operand-
size attribute are the same size, ZeroExtend returns the value unaltered.

SignExtend(value) — Returns a value sign-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, sign
extending a byte containing the value —10 converts the byte from F6H to a
doubleword value of FFFFFFF6H. If the value passed to the SignExtend function
and the operand-size attribute are the same size, SignExtend returns the value
unaltered.

SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a
signed 8-bit value. If the signed 16-bit value is less than -128, it is represented
by the saturated value -128 (80H); if it is greater than 127, it is represented by
the saturated value 127 (7FH).

SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than -32768, it is
represented by the saturated value -32768 (8000H); if it is greater than 32767,
it is represented by the saturated value 32767 (7FFFH).

SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (00H); if it is greater than 255, it is represented by
the saturated value 255 (FFH).

SaturateToSignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than -128, it is represented by the saturated value
-128 (80H); if it is greater than 127, it is represented by the saturated value 127
(7FH).

SaturateToSignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than -32768, it is represented by the saturated
value -32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

SaturateToUnsignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value

Vol.2A 3-13

INSTRUCTION SET REFERENCE, A-L

zero (O0H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

* SaturateToUnsignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value
zero (O0H); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).

®* LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the least significant word of the doubleword result in the destination
operand.

* HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.

®* Push(value) — Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction. See the “"Operation”
subsection of the "PUSH—Push Word, Doubleword or Quadword Onto the Stack”
section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

®* Pop() removes the value from the top of the stack and returns it. The statement
EAX « Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word, a doubleword or a quadword depending on the operand-size
attribute. See the “Operation” subsection in the "POP—Pop a Value from the
Stack” section of Chapter 4 of the Inte/l® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

®* PopRegisterStack — Marks the FPU ST(0) register as empty and increments
the FPU register stack pointer (TOP) by 1.

®* Switch-Tasks — Performs a task switch.

* Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit
string is a sequence of bits in memory or a register. Bits are nhumbered from low-
order to high-order within registers and within memory bytes. If the BitBase is a
register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the
mode and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

63 31 21 0

T—Bit Offset « 21 A

Figure 3-1. Bit Offset for BIT[RAX, 21]

3-14 Vol. 2A

INSTRUCTION SET REFERENCE, A-L

If BitBase is a memory address, the BitOffset can range has different ranges
depending on the operand size (see Table 3-2).

Table 3-2. Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset | Register BitOffset
16 0to15 -2 102> -1
32 0to 31 -23Tt0 231 -1
64 01063 25310263 -1

The addressed bit is numbered (Offset MOD 8) within the byte at address
(BitBase + (BitOffset DIV 8)) where DIV is signed division with rounding towards
negative infinity and MOD returns a positive number (see Figure 3-2).

BitBase + BitBase J BitBase —

LBitOffset «—+13

07 07 5 0

BitBase BitBase — BitBase -
BitOffset « — J

3.1.1.10

Figure 3-2. Memory Bit Indexing

Intel® C/C++ Compiler Intrinsics Equivalents Section

The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions
that allow using the syntax of C function calls and C variables instead of hardware
registers. Using these intrinsics frees programmers from having to manage registers
and assembly programming. Further, the compiler optimizes the instruction sched-
uling so that executable run faster.

The following sections discuss the intrinsics API and the MMX technology and SIMD
floating-point intrinsics. Each intrinsic equivalent is listed with the instruction
description. There may be additional intrinsics that do not have an instruction equiv-

Vol.2A 3-15

INSTRUCTION SET REFERENCE, A-L

alent. It is strongly recommended that the reader reference the compiler documen-
tation for the complete list of supported intrinsics.

See Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C, for
more information on using intrinsics.

Intrinsics API

The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrin-
sics is that you can use the syntax of C function calls and C variables instead of hard-
ware registers. This frees you from managing registers and programming assembly.
Further, the compiler optimizes the instruction scheduling so that your executable
runs faster. For each computational and data manipulation instruction in the new
instruction set, there is a corresponding C intrinsic that implements it directly. The
intrinsics allow you to specify the underlying implementation (instruction selection)
of an algorithm yet leave instruction scheduling and register allocation to the
compiler.

MMX™ Technology Intrinsics

The MMX technology intrinsics are based on a __m64 data type that represents the

specific contents of an MMX technology register. You can specify values in bytes,

short integers, 32-bit values, or a 64-bit object. The __m64 data type, however, is

not a basic ANSI C data type, and therefore you must observe the following usage

restrictions:

®* Use _ _m64 data only on the left-hand side of an assignment, as a return value,
or as a parameter. You cannot use it with other arithmetic expressions (“+”, *>>",
and so on).

®* Use _ _m64 objects in aggregates, such as unions to access the byte elements
and structures; the address of an __m64 object may be taken.

® Use__ _m64 data only with the MMX technology intrinsics described in this manual
and Intel® C/C++ compiler documentation.

¢ See:
— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C, for more information on using intrinsics.

— SSE/SSE2/SSE3 Intrinsics

— SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium
lll, Pentium 4, and Intel Xeon processors. There are three data types
supported by these intrinsics: _ _m128, _ m128d, and _ _m128i.

3-16 Vol. 2A

INSTRUCTION SET REFERENCE, A-L

®* The_ _m128 data type is used to represent the contents of an XMM register used
by an SSE intrinsic. This is either four packed single-precision floating-point
values or a scalar single-precision floating-point value.

® The_ _m128d data type holds two packed double-precision floating-point values
or a scalar double-precision floating-point value.

®* The __m128idata type can hold sixteen byte, eight word, or four doubleword, or
two quadword integer values.

The compiler aligns __m128, _ m128d, and __m128i local and global data to
16-byte boundaries on the stack. To align integer, float, or double arrays, use the
declspec statement as described in Intel C/C++ compiler documentation. See
http://www.intel.com/support/performancetools/.

The _ _m128, _ m128d, and __m128i data types are not basic ANSI C data types
and therefore some restrictions are placed on its usage:

® Use_ ml128, __m128d, and _ _m128i only on the left-hand side of an
assignment, as a return value, or as a parameter. Do not use it in other arithmetic
expressions such as “+” and “>>."

®* Do notinitialize __m128, _ m128d, and __m128i with literals; there is no way to
express 128-bit constants.

® Use_ m128,_m128d, and __m128i objects in aggregates, such as unions (for
example, to access the float elements) and structures. The address of these
objects may be taken.

® Use_ mi128, __m128d, and __m128i data only with the intrinsics described in
this user’s guide. See Appendix C, “Intel® C/C++ Compiler Intrinsics and
Functional Equivalents,” in the Inte/l® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2C, for more information on using intrinsics.

The compiler aligns __m128, _ m128d, and __m128i local data to 16-byte bound-
aries on the stack. Global __m128 data is also aligned on 16-byte boundaries. (To
align float arrays, you can use the alignment declspec described in the following
section.) Because the new instruction set treats the SIMD floating-point registers in
the same way whether you are using packed or scalar data, there is no __m32 data
type to represent scalar data as you might expect. For scalar operations, you should
use the __m128 objects and the “scalar” forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” preci-
sion operations. The packed floats are represented in right-to-left order, with the
lowest word (right-most) being used for scalar operations: [z, y, X, w]. To explain
how memory storage reflects this, consider the following example.

The operation:

float a[4] «{1.0,2.0,3.0,4.0},
__m128t« _mm_load_ps(a);

Produces the same result as follows:

Vol.2A 3-17

INSTRUCTION SET REFERENCE, A-L

__m128t« _mm_set_ps(4.0, 3.0, 2.0, 1.0);
In other words:

t«<[4.0,3.0,20,1.0]
Where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to
implement them. You should be familiar with the hardware features provided by the
SSE, SSE2, SSE3, and MMX technology when writing programs with the intrinsics.

Keep the following important issues in mind:

® Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful of their implementation cost.

®* Data loaded or stored as __m128 objects must generally be 16-byte-aligned.

® Some intrinsics require that their argument be immediates, that is, constant
integers (literals), due to the nature of the instruction.

® The result of arithmetic operations acting on two NaN (Not a Number) arguments
is undefined. Therefore, floating-point operations using NaN arguments may not
match the expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to
its usage, refer to Intel C/C++ compiler documentation. See:

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C, for more information on using intrinsics.

3.1.1.11 Flags Affected Section

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, "EFLAGS Cross-Reference,” in the Inte/l® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional
assignments are described in the “"Operation” section. The values of flags listed as
undefined may be changed by the instruction in an indeterminate manner. Flags
that are not listed are unchanged by the instruction.

3.1.1.12 FPU Flags Affected Section

The floating-point instructions have an “FPU Flags Affected” section that describes
how each instruction can affect the four condition code flags of the FPU status word.

3-18 Vol. 2A

INSTRUCTION SET REFERENCE, A-L

3.1.1.13 Protected Mode Exceptions Section

The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two
letters and an optional error code in parentheses. For example, #GP(0) denotes a
general protection exception with an error code of 0. Table 3-3 associates each two-
letter mnemonic with the corresponding interrupt vector number and exception
name. See Chapter 6, “Interrupt and Exception Handling,” in the Inte/® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for a detailed description of
the exceptions.

Application programmers should consult the documentation provided with their oper-

ating systems to determine the actions taken when exceptions occur.

Table 3-3. Intel 64 and IA-32 General Exceptions
Vector | Name Source Protected | Real Virtual
No. Mode! Address | 8086
Mode Mode
0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes
1 #DB—Debug Any code or data reference. Yes Yes Yes
3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes
4 #0OF—Overflow INTO instruction. Yes Yes Yes
5 #BR—BOUNDRange | BOUND instruction. Yes Yes Yes
Exceeded
6 #UD—Invalid UDZ instruction or reserved Yes Yes Yes
Opcode (Undefined | opcode.
Opcode)
7 #NM—Device Not Floating-point or WAIT/FWAIT Yes Yes Yes
Available (No Math | instruction.
Coprocessor)
8 #DF—Double Fault | Any instruction that can Yes Yes Yes
generate an exception, an
NMI, or an INTR.
10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes
11 #NP—Segment Not | Loading segment registers or Yes Reserved Yes
Present accessing system segments.
12 #SS—Stack Stack operations and SS Yes Yes Yes
Segment Fault register loads.
13 #GP—General Any memory reference and Yes Yes Yes
Protection? other protection checks.

Vol.2A 3-19

INSTRUCTION SET REFERENCE, A-L

Table 3-3. Intel 64 and IA-32 General Exceptions (Contd.)

Vector | Name Source Protected | Real Virtual
No. Mode! Address | 8086
Mode Mode
14 #PF—Page Fault Any memory reference. Yes Reserved Yes
16 #MF—Floating-Point | Floating-point or WAIT/FWAIT Yes Yes Yes
Error (Math Fault) instruction.
17 #AC—Alignment Any data reference in Yes Reserved Yes
Check memory.
18 #MC—Machine Model dependent machine Yes Yes Yes
Check check errors.
19 #XM—SIMD SSE/SSEZ2/SSE3 floating-point Yes Yes Yes
Floating-Point instructions.
Numeric Error

NOTES:
1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.

3.1.1.14 Real-Address Mode Exceptions Section

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode (see Table 3-3).

3.1.1.15 Virtual-8086 Mode Exceptions Section

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in virtual-8086 mode (see Table 3-3).

3.1.1.16 Floating-Point Exceptions Section

The “Floating-Point Exceptions” section lists exceptions that can occur when an x87
FPU floating-point instruction is executed. All of these exception conditions result in
a floating-point error exception (#MF, vector number 16) being generated. Table 3-4
associates a one- or two-letter mnemonic with the corresponding exception name.
See “Floating-Point Exception Conditions” in Chapter 8 of the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a detailed description of
these exceptions.

3-20 Vol.2A

INSTRUCTION SET REFERENCE, A-L

Table 3-4. x87 FPU Floating-Point Exceptions

Mnemonic Name Source
Floating-point invalid operation:
z:i - Stack overflow or underflow - x87 FPU stack overflow or underflow
- Invalid arithmetic operation - Invalid FPU arithmetic operation
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand Source operand that is a denormal number
#0O Floating-point numeric overflow Overflow in result
#U Floating-point numeric underflow Underflow in result
#P Floating-point inexact result Inexact result (precision)
(precision)

3.1.1.17 SIMD Floating-Point Exceptions Section

The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an
SSE/SSE2/SSE3 floating-point instruction is executed. All of these exception condi-
tions result in a SIMD floating-point error exception (#XM, vector number 19) being
generated. Table 3-5 associates a one-letter mnemonic with the corresponding
exception name. For a detailed description of these exceptions, refer to “SSE and
SSE2 Exceptions”, in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Table 3-5. SIMD Floating-Point Exceptions

Mnemonic Name Source
#l Floating-point invalid operation | Invalid arithmetic operation or source operand
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand | Source operand that is a denormal number
#0 Floating-point numeric overflow | Overflow in result
#U Floating-point numeric underflow | Underflow in result
#P Floating-point inexact result Inexact result (precision)

3.1.1.18 Compatibility Mode Exceptions Section

This section lists exceptions that occur within compatibility mode.

3.1.1.19 64-Bit Mode Exceptions Section

This section lists exceptions that occur within 64-bit mode.

Vol.2A 3-21

INSTRUCTION SET REFERENCE, A-L

3.2 INSTRUCTIONS (A-L)

The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions
(A-L). See also: Chapter 4, “Instruction Set Reference, M-Z,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B.

3-22 Vol.2A

INSTRUCTION SET REFERENCE, A-L

AAA—ASCII Adjust After Addition

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
37 AAA NP Invalid Valid ASCII adjust AL after
addition.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The
AL register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF
and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register
are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF (AL AND OFH) > 9) or (AF=1)
THEN
AL < AL +6;
AH <« AH + 1;
AF « 1;
CF«1;
AL < AL AND OFH;
ELSE
AF < O;
CF <0
AL < AL AND OFH;
Fl;

AAA—ASCII Adjust After Addition Vol.2A 3-23

INSTRUCTION SET REFERENCE, A-L

Fl;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; other-
wise they are set to 0. The OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-24 Vol. 2A AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-L

AAD—ASCII Adjust AX Before Division

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
D5 0A AAD NP Invalid Valid ASCII adjust AX before
division.
D5 ib (No mnemonic) NP Invalid Valid Adjust AX before division to
number base imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on
the result will yield a correct unpacked BCD value. The AAD instruction is only useful
when it precedes a DIV instruction that divides (binary division) the adjusted value in
the AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then
clears the AH register to 00H. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit (base 10) number in registers AH

and AL.

The generalized version of this instruction allows adjustment of two unpacked digits
of any number base (see the “"Operation” section below), by setting the imm8 byte to
the selected number base (for example, 08H for octal, 0AH for decimal, or OCH for
base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean
adjust ASCII (base 10) values. To adjust values in another number base, the instruc-
tion must be hand coded in machine code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode

THEN
#UD;

ELSE
tempAL « AL;
tempAH « AH;
AL « (tempAL + (tempAH = imm8)) AND FFH;
(* imm8is set to OAH for the AAD mnemonic.*)

AAD—ASCII Adjust AX Before Division Vol.2A 3-25

INSTRUCTION SET REFERENCE, A-L

AH < 0O;
Fl;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register; the OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-26 Vol.2A AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-L

AAM—ASCII Adjust AX After Multiply

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
D4 0A AAM NP Invalid Valid ASCIl adjust AX after
multiply.
D4 ib (No mnemonic) NP Invalid Valid Adjust AX after multiply to
number base imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair
of unpacked (base 10) BCD values. The AX register is the implied source and desti-
nation operand for this instruction. The AAM instruction is only useful when it follows
an MUL instruction that multiplies (binary multiplication) two unpacked BCD values
and stores a word result in the AX register. The AAM instruction then adjusts the
contents of the AX register to contain the correct 2-digit unpacked (base 10) BCD
result.

The generalized version of this instruction allows adjustment of the contents of the
AX to create two unpacked digits of any number base (see the “Operation” section
below). Here, the imma8 byte is set to the selected number base (for example, 08H
for octal, OAH for decimal, or OCH for base 12 numbers). The AAM mnemonic is inter-
preted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to
values in another number base, the instruction must be hand coded in machine code
(D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL « AL
AH « tempAL / imm8; (* imm8is set to OAH for the AAM mnemonic *)
AL « tempAL MOD imm8;
Fl;

The immediate value (imm8) is taken from the second byte of the instruction.

AAM—ASCII Adjust AX After Multiply Vol.2A 3-27

INSTRUCTION SET REFERENCE, A-L

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register. The OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-28 Vol. 2A AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-L

AAS—ASCII Adjust AL After Subtraction

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
3F AAS NP Invalid Valid ASCII adjust AL after
subtraction.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Adjusts the result of the subtraction of two unpacked BCD values to create a
unpacked BCD result. The AL register is the implied source and destination operand
for this instruction. The AAS instruction is only useful when it follows a SUB instruc-
tion that subtracts (binary subtraction) one unpacked BCD value from another and
stores a byte result in the AL register. The AAA instruction then adjusts the contents
of the AL register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the
CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared,
and the AH register is unchanged. In either case, the AL register is left with its top
four bits set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-bit mode
THEN
#UD;
ELSE
IF (AL AND OFH) > 9) or (AF =1)
THEN
AX « AX - 6;
AH <« AH-1;
AF 1,
CFe1;
AL « AL AND OFH;
ELSE
CF<0;
AF < Q;
AL « AL AND OFH;

AAS—ASCII Adjust AL After Subtraction Vol.2A 3-29

INSTRUCTION SET REFERENCE, A-L
Fl;
Fl;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-30 Vol.2A AAS—ASCII Adjust AL After Subtraction

INSTRUCTION SET REFERENCE, A-L

ADC—Add with Carry

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode

14 ib ADC AL, imm8 I Valid Valid Add with carry imm8to AL.

15 iw ADC AX, imm16 I Valid Valid Add with carry imm16 to
AX.

15id ADC EAX, imm32 | Valid Valid Add with carry imm32 to
EAX.

REXW +15id ADCRAX, imm32 | Valid N.E. Add with carry imm32 sign
extended to 64-bits to RAX.

80/2ib ADC r/m8, imm8 Ml Valid Valid Add with carry imm8 to
r/m8.

REX+80/2ib ADC/m8,imm8 Ml Valid N.E. Add with carry imm8 to
r/m8.

81172 iw ADC r/m16, Ml Valid Valid Add with carry imm16 to

imm16 r/m16.
81/2id ADC r/m32, Ml Valid Valid Add with CF imm32 to
imm32 r/m32.

REXW +81/2 ADC r/m64, Ml Valid N.E. Add with CF imm32 sign

id imm32 extended to 64-bits to
r/mé4.

83/2ib ADC r/m16, imm8 Ml Valid Valid Add with CF sign-extended
imm8to r/m16.

83/2ib ADC r/m32, imm8 Ml Valid Valid Add with CF sign-extended
imm8into r/m32.

REXW +83/2 ADC r/m64, imm8 Ml Valid N.E. Add with CF sign-extended

ib imm8into r/mé64.

10/r ADC r/m8, r8 MR Valid Valid Add with carry byte register
to r/m8.

REX+10/r ADC /m8’, 18 MR Valid N.E. Add with carry byte register
to r/m64.

11/r ADC r/m16,r16 MR Valid Valid Add with carry r16 to
r/m16.

11 /r ADC r/m32,r32 MR Valid Valid Add with CF r32 to r/m32.

REXW+11/r ADCr/m64,r64 MR Valid N.E. Add with CF r64 to r/m64.

12/r ADC r8, r/m8 RM Valid Valid Add with carry r/m8 to byte
register.

REX+12/r ADC r8, r/m8 RM Valid N.E. Add with carry r/m64 to
byte register.

ADC—Add with Carry Vol.2A 3-31

INSTRUCTION SET REFERENCE, A-L

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
13/r ADCr16,r/m16 RM Valid Valid Add with carry r/m16 to
r16.
13/r ADCr32,r/m32 RM Valid Valid Add with CF r/m32 to r32.
REXW +13/r ADCr64, r/m64 RM Valid N.E. Add with CF r/m64 to r64.
NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
M ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
Description

Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destina-
tion operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. (However, two memory operands
cannot be used in one instruction.) The state of the CF flag represents a carry from a
previous addition. When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition
in which an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

3-32 Vol.2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L

Operation

DEST « DEST + SRC + CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

ADC—Add with Carry Vol.2A 3-33

INSTRUCTION SET REFERENCE, A-L

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-34 Vol.2A ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L

ADD—Add
Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.
05 iw ADD AX, imm16 | Valid Valid Add imm16 to AX.
05id ADD EAX, imm32 | Valid Valid Add imm32 to EAX.
REXW +05id ADDRAX, imm32 | Valid N.E. Add imm32 sign-extended
to 64-bits to RAX.
80/0ib ADD r/m8, imm8 M| Valid Valid Add imm8 to r/m8.
REX+80/0ib ADD /m8,imm8 Ml Valid N.E. Add sign-extended imm8to
r/mé4.
81/0iw ADD r/m16, Ml Valid Valid Add imm16 to r/m16.
immi16
81/0id ADD r/m32, Ml Valid Valid Add imm32 to r/m32.
imm32
REXW +81/0 ADD r/m64, Ml Valid N.E. Add imm32 sign-extended
id imm32 to 64-bits to r/m64.
83/0ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imm8 to
r/m16.
83/0ib ADD r/m32, imm8 Ml Valid Valid Add sign-extended imm8 to
r/m32.
REXW +83/0 ADD r/m64, imm8 MI Valid N.E. Add sign-extended imm8to
ib r/mé4.
00/r ADD r/m8, r8 MR Valid Valid Add r8to r/m8.
REX+00/r ADD r/m8, r8 MR Valid N.E. Add r8to r/m8.
0o1/r ADD r/mi16,r16 MR Valid Valid Add r16to r/m16.
o1/r ADD r/m32,r32 MR Valid Valid Add r32 to r/m32.
REXW +01/r ADDr/m64,r64 MR Valid N.E. Add r64 to r/m64.
02/r ADD r8, r/m8 RM Valid Valid Add r/m8to r8.
REX +02/r ADD 78, /m8 RM Valid N.E. Add r/m8to r8.
03/r ADD r16,r/m16 RM Valid Valid Add r/mi16torl6.
03/r ADD r32,r/m32 RM Valid Valid Add r/m32to r32.
REXW +03/r ADDr64,r/m64 RM Valid N.E. Add r/m64 to r64.
NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

ADD—Add

Vol.2A 3-35

INSTRUCTION SET REFERENCE, A-L

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
Ml ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
Description

Adds the destination operand (first operand) and the source operand (second
operand) and then stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an imme-
diate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed
and unsigned integer operands and sets the OF and CF flags to indicate a carry (over-
flow) in the signed or unsigned result, respectively. The SF flag indicates the sign of
the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX a
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

DEST « DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

3-36 Vol.2A ADD—Add

#PF(fault-code)
#AC(0)

#UD

INSTRUCTION SET REFERENCE, A-L

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#S5(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

ADD—Add

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2A 3-37

INSTRUCTION SET REFERENCE, A-L

ADDPD—Add Packed Double-Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
66 OF 58 /r RM VNV SSE2 Add packed double-precision
ADDPD xmm1, xmm2/m128 floating-point values from

xmm2/m128to xmm1.

VEX.NDS.128.66.0F.WIG 58 /r RVM V/V AVX Add packed double-precision
VADDPD xmm1,xmm2, xmm3/m128 floating-point values from

xmm3/mem to xmmZ2 and
stores result in xmm1.

VEX.NDS.256.66.0F.WIG 58 /r RVM V/V AVX Add packed double-precision
VADDPD ymm1, ymmz2, floating-point values from
ymm3/m256 ymm3/mem to ymmZ2 and

stores result in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reqg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a SIMD add of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed double-precision floating-point results in the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified. See Chapter 11 in the Inte/l® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an overview of SIMD double-precision floating-
point operation.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

3-38 Vol.2A ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Operation

ADDPD (128-bit Legacy SSE version)
DEST[63:0] «— DEST[63:0] + SRC[63:0];
DEST[127:64] < DEST[127:64] + SRC[127:64];
DEST[VLMAX-1:128] (Unmodified)

VADDPD (VEX.128 encoded version)
DEST[63:0] ¢ SRC1[63:0] + SRC2[63:0]
DEST[127:64] €« SRC1[127:64] + SRC2[127:64]
DEST[VLMAX-1:128] ¢« 0

VADDPD (VEX.256 encoded version)

DEST[63:0] ¢ SRC1[63:0] + SRC2[63:0]
DEST[127:64] <« SRC1[127:64] + SRC2[127:64]
DEST[191:128] ¢« SRC1[191:128] + SRC2[191:128]
DEST[255:192] ¢ SRC1[255:192] + SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ADDPD: __m128d_mm_add pd(__m128da, __m128d b)
VADDPD: __m256d _mm256_add_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.

ADDPD—Add Packed Double-Precision Floating-Point Values Vol.2A 3-39

INSTRUCTION SET REFERENCE, A-L

ADDPS—Add Packed Single-Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
OF 58 /r RM VNV SSE Add packed single-precision
ADDPS xmm1, xmm2/m128 floating-point values from

xmmZ2/m128to xmm1 and
stores result in xmm1.

VEX.NDS.128.0F.WIG 58 /r RVM VNV AVX Add packed single-precision

VADDPS xmm1,xmm2, xmm3/m128 floating-point values from
xmm3/mem to xmmZ2 and

stores result in xmm1.
VEX.NDS.256.0F.WIG 58 /r RVM VNV AVX Add packed single-precision

VADDPS ymm1, ymm2, ymm3/m256 floating-point values from
ymm3/mem to ymmZ2 and

stores result in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r)) NA
Description

Performs a SIMD add of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed single-precision floating-point results in the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified. See Chapter 10 in the Inte/l® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an overview of SIMD single-precision floating-
point operation.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

3-40 Vol.2A ADDPS—Add Packed Single-Precision Floating-Point Values

Operation

ADDPS (128-bit Legacy SSE version)
DEST[31:0] «- DEST[31:0] + SRC[31:0];
DEST[63:32] « DEST[63:32] + SRC[63:32];
DEST[95:64] « DEST[95:64] + SRC[95:64];
DEST[127:96] «— DEST[127:96] + SRC[127:96];
DEST[VLMAX-1:128] (Unmodified)

VADDPS (VEX.128 encoded version)
DEST[31:0] ¢ SRC1[31:0] + SRC2[31:0]
DEST[63:32] € SRC1[63:32] + SRC2[63:32]
DEST[95:64] € SRC1[95:64] + SRC2[95:64]
DEST[127:96] < SRC1[127:96] + SRC2[127:96]
DEST[VLMAX-1:128] < 0

VADDPS (VEX.256 encoded version)

DEST[31:0] ¢« SRC1[31:0] + SRC2[31:0]
DEST[63:32] € SRC1[63:32] + SRC2[63:32]
DEST[95:64] € SRC1[95:64] + SRC2[95:64]
DEST[127:96] < SRC1[127:96] + SRC2[127:96]
DEST[159:128] ¢« SRC1[159:128] + SRC2[159:128]
DEST[191:160]« SRC1[191:160] + SRC2[191:160]
DEST[223:192] ¢ SRC1[223:192] + SRC2[223:192]
DEST[255:224] < SRC1[255:224] + SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent
ADDPS: _ m128 _mm_add_ps(__m1283a,__m128Db)
VADDPS: __ m256 _mm256_add_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.

ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Vol.2A 3-41

INSTRUCTION SET REFERENCE, A-L

ADDSD—Add Scalar Double-Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
F2 OF 58 /r RM VIV SSE? Add the low double-
ADDSD xmm1, xmm2/m64 precision floating-point
value from xmmZ2/mé64 to
xmm1.
VEX.NDS.LIG.F2.0F.WIG 58 /r RVM V/V AVX Add the low double-
VADDSD xmm1, xmm2, xmm3/m64 precision floating-point
value from xmm3/mem to
xmmZ2 and store the result
in xmm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r)) NA

Description

Adds the low double-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand.

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. See Chapter 11 in the Inte/® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of a scalar double-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: Bits (VLMAX-1:64) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation
ADDSD (128-bit Legacy SSE version)

DEST[63:0] < DEST[63:0] + SRC[63:0]
DEST[VLMAX-1:64] (Unmodified)

3-42 Vol.2A ADDSD—Add Scalar Double-Precision Floating-Point Values

VADDSD (VEX.128 encoded version)
DEST[63:0] € SRC1[63:0] + SRC2[63:0]
DEST[127:64] €« SRC1[127:64]
DEST[VLMAX-1:128] €« 0

Intel C/C++ Compiler Intrinsic Equivalent
ADDSD: __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.

ADDSD—Add Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Vol.2A 3-43

INSTRUCTION SET REFERENCE, A-L

ADDSS—Add Scalar Single-Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
F30F 58 /r RM VNV SSE Add the low single-precision
ADDSS xmm1, xmm2/m32 floating-point value from
xmmZ2/m32 to xmm1.
VEX.NDS.LIG.F3.0F.WIG 58 /r RVM VIV AVX Add the low single-precision
VADDSS xmm1,xmm2, xmm3/m32 floating-point value from
xmm3/mem to xmm2 and
store the result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reqg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Adds the low single-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the single-precision
floating-point result in the destination operand.

The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. See Chapter 10 in the Inte/l® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of a scalar single-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: Bits (VLMAX-1:32) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied
from corresponding bits in the first source operand. Bits (VLMAX-1:128) of the desti-
nation YMM register are zeroed.

Operation

ADDSS DEST, SRC (128-bit Legacy SSE version)
DEST[31:0] ¢ DEST[31:0] + SRC[31:0];
DEST[VLMAX-1:32] (Unmodified)

VADDSS DEST, SRC1, SRC2 (VEX.128 encoded version)

3-44 Vol. 2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

DEST[31:0] €< SRC1[31:0] + SRC2[31:0]
DEST[127:32] € SRC1[127:32]
DEST[VLMAX-1:128] € 0

Intel C/C++ Compiler Intrinsic Equivalent
ADDSS: __m128 _mm_add_ss(__m1283a,_m128Db)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 3.

ADDSS—Add Scalar Single-Precision Floating-Point Values Vol.2A 3-45

INSTRUCTION SET REFERENCE, A-L

ADDSUBPD—Packed Double-FP Add/Subtract

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
66 OF DO /r RM VNV SSE3 Add/subtract double-
ADDSUBPD xmm1, xmm2/m128 precision floating-point
values from xmm2/m128to
xmmT1.
VEX.NDS.128.66.0F.WIG DO /r RVM V/V AVX Add/subtract packed
VADDSUBPD xmm1, Xmm2, double-precision floating-
xmm3/m128 point values from

xmm3/mem to xmmZ2 and
stores result in xmm1.

VEX.NDS.256.66.0F.WIG DO /r RVM V/V AVX Add / subtract packed
VADDSUBPD ymm1, ymm2, double-precision floating-
ymm3/m256 point values from

ymm3/mem to ymmZ2 and
stores result in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Adds odd-numbered double-precision floating-point values of the first source
operand (second operand) with the corresponding double-precision floating-point
values from the second source operand (third operand); stores the result in the odd-
numbered values of the destination operand (first operand). Subtracts the even-
numbered double-precision floating-point values from the second source operand
from the corresponding double-precision floating values in the first source operand;
stores the result into the even-numbered values of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified. See Figure 3-3.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

3-46 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination

operand is a YMM register.

ADDSUBPD xmm1, xmm2/m128

[127:64] [63:0]

Y 4

xmm1[127:64] + xmm2/m128[127:64] xmm1[63:0] - xmm2/m128[63:0]

[127:64] [63:0]

xmm2/m128

RESULT:
xmm1

Figure 3-3. ADDSUBPD—Packed Double-FP Add/Subtract

Operation

ADDSUBPD (128-bit Legacy SSE version)
DEST[63:0] < DEST[63:0] - SRC[63:0]
DEST[127:64] < DEST[127:64] + SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VADDSUBPD (VEX.128 encoded version)
DEST[63:0] ¢ SRC1[63:0] - SRC2[63:0]
DEST[127:64] <« SRC1[127:64] + SRC2[127:64]
DEST[VLMAX-1:128] < 0

VADDSUBPD (VEX.256 encoded version)
DEST[63:0] ¢ SRC1[63:0] - SRC2[63:0]
DEST[127:64] < SRC1[127:64] + SRC2[127:64]
DEST[191:128] < SRC1[191:128] - SRC2[191:128]
DEST[255:192] ¢ SRC1[255:192] + SRC2[255:192]

ADDSUBPD—Packed Double-FP Add/Subtract

Vol.2A 3-47

INSTRUCTION SET REFERENCE, A-L

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPD: __m128d _mm_addsub_pd(__m128da, __m128d b)
VADDSUBPD: __m256d _mm256_addsub_pd (__m256d a, __m256d b)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.

3-48 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L

ADDSUBPS—Packed Single-FP Add/Subtract

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
F2 OF DO /r RM VNV SSE3 Add/subtract single-
ADDSUBPS xmm1, xmm2/m128 precision floating-point
values from xmmZ2/m1281to
xmmT.
VEX.NDS.128.F2.0FWIG DO /r RVM V/V AVX Add/subtract single-
VADDSUBPS xmm1, xmm2, precision floating-point
xmm3/m128 values from xmm3/mem to
xmm2 and stores result in
xmm1.
VEX.NDS.256.F2.0FWIG DO /r RVM VNV AVX Add / subtract single-
VADDSUBPS ymm1, ymm2, precision floating-point
ymm3/m256 values from ymm3/mem to
ymmZ2 and stores result in
ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.wvwv (r) ModRM:r/m (r) NA
Description

Adds odd-numbered single-precision floating-point values of the first source operand
(second operand) with the corresponding single-precision floating-point values from
the second source operand (third operand); stores the result in the odd-numbered
values of the destination operand (first operand). Subtracts the even-numbered
single-precision floating-point values from the second source operand from the
corresponding single-precision floating values in the first source operand; stores the
result into the even-numbered values of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified. See Figure 3-4.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

ADDSUBPS—Packed Single-FP Add/Subtract Vol.2A 3-49

INSTRUCTION SET REFERENCE, A-L

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

ADDSUBPS xmm1, xmm2/m128
[127:96] [95:64] 63:32] [31:0] ’;ﬂ'gg’
A
xmm1[127:96] + xmm1[95:64] - xmm2/ xmm1[63:32] + xmm1[31:0] - RESULT:
xmm2/m128[127:96] m128[95:64] xmm2/m128[63:32] xmm2/m128[31:0] | xmm1
[127:96] [95:64] [63:32] [31:0]

OM15992

Figure 3-4. ADDSUBPS—Packed Single-FP Add/Subtract

Operation

ADDSUBPS (128-bit Legacy SSE version)
DEST[31:0] €« DEST[31:0] - SRC[31:0]
DEST[63:32] € DEST[63:32] + SRC[63:32]
DEST[95:64] € DEST[95:64] - SR(C[95:64]
DEST[127:96] < DEST[127:96] + SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VADDSUBPS (VEX.128 encoded version)
DEST[31:0] ¢ SRC1[31:0] - SRC2[31:0]
DEST[63:32] € SRC1[63:32] + SRC2[63:32]
DEST[95:64] € SRC1[95:64] - SRC2[95:64]
DEST[127:96] € SRC1[127:96] + SRC2[127:96]
DEST[VLMAX-1:128] € 0

VADDSUBPS (VEX.256 encoded version)
DEST[31:0] ¢ SRC1[31:0] - SRC2[31:0]
DEST[63:32] € SRC1[63:32] + SRC2[63:32]
DEST[95:64] € SRC1[95:64] - SRC2[95:64]

3-50 Vol.2A ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-L

DEST[127:96] < SRC1[127:96] + SRC2[127:96]
DEST[159:128] < SRC1[159:128] - SRC2[159:128]
DEST[191:160]< SRC1[191:160] + SRC2[191:160]
DEST[223:192] €< SRC1[223:192] - SRC2[223:192]
DEST[255:224] €< SRC1[255:224] + SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent
ADDSUBPS: __m128 _mm_addsub_ps(__m1283a,_m128Db)
VADDSUBPS: __m256 _mm256_addsub_ps (__m256 a, __m256 b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Exceptions Type 2.

ADDSUBPS—Packed Single-FP Add/Subtract Vol.2A 3-51

INSTRUCTION SET REFERENCE, A-L

AESDEC—Perform One Round of an AES Decryption Flow

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
66 OF 38 DE /r RM VNV AES Perform one round of an
AESDEC xmm1, xmm2/m128 AES decryption flow, using

the Equivalent Inverse
Cipher, operatingon a 128-
bit data (state) from xmm1
with a 128-bit round key
from xmm2/m128.

VEX.NDS.128.66.0F38.WIG DE /r RVM V/V Both AES Perform one round of an
VAESDEC xmm1, xmm2, and AES decryption flow, using
xmm3/m128 AVX flags the Equivalent Inverse

Cipher, operating on a 128-
bit data (state) from xmm2
with a 128-bit round key
from xmm3/m128; store
the result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

This instruction performs a single round of the AES decryption flow using the Equiva-
lent Inverse Cipher, with the round key from the second source operand, operating
on a 128-bit data (state) from the first source operand, and store the result in the
destination operand.

Use the AESDEC instruction for all but the last decryption round. For the last decryp-
tion round, use the AESDECCLAST instruction.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

3-52 Vol.2A AESDEC—Perform One Round of an AES Decryption Flow

Operation

AESDEC

STATE « SRC1;

RoundKey « SRC2;

STATE « InvShiftRows(STATE);
STATE « InvSubBytes(STATE);
STATE « InvMixColumns(STATE);
DEST[127:0] < STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESDEC

STATE « SRC1;

RoundKey « SRCZ;

STATE « InvShiftRows(STATE);
STATE « InvSubBytes(STATE);
STATE « InvMixColumns(STATE);
DEST[127:0] «- STATE XOR RoundKey;
DEST[VLMAX-1:128] « O

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC: __m128i _mm_aesdec (__m128i,

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.

AESDEC—Perform One Round of an AES Decryption Flow

__m128i)

INSTRUCTION SET REFERENCE, A-L

Vol.2A 3-53

INSTRUCTION SET REFERENCE, A-L

AESDECLAST—Perform Last Round of an AES Decryption Flow

Opcode Instruction Op/ 64/32-bit CPUID Description
En Mode Feature
Flag
66 OF 38 DF /r RM VNV AES Perform the last round of an
AESDECLAST xmm1, xmm2/m128 AES decryption flow, using

the Equivalent Inverse
Cipher, operatingon a 128-
bit data (state) from xmm1
with a 128-bit round key
from xmm2/m128.

VEX.NDS.128.66.0F38.WIG DF /r RVM VNV Both AES Perform the last round of an
VAESDECLAST xmm1, xmm2, and AES decryption flow, using
xmm3/m128 AVX flags the Equivalent Inverse

Cipher, operating on a 128-
bit data (state) from xmm2
with a 128-bit round key
from xmm3/m128; store
the result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

This instruction performs the last round of the AES decryption flow using the Equiva-
lent Inverse Cipher, with the round key from the second source operand, operating
on a 128-bit data (state) from the first source operand, and store the result in the
destination operand.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

AESDECLAST

3-54 Vol. 2A AESDECLAST—Perform Last Round of an AES Decryption Flow

INSTRUCTION SET REFERENCE, A-L

STATE « SRC1;

RoundKey « SRC2;

STATE « InvShiftRows(STATE);
STATE « InvSubBytes(STATE);
DEST[127:0] < STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESDECLAST

STATE « SRC1;

RoundKey « SRCZ;

STATE « InvShiftRows(STATE);
STATE « InvSubBytes(STATE);
DEST[127:0] < STATE XOR RoundKey;
DEST[VLMAX-1:128] «- 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDECLAST: __m128i _mm_aesdeclast (__m128i, __m128i)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.

AESDECLAST—Perform Last Round of an AES Decryption Flow Vol.2A 3-55

INSTRUCTION SET REFERENCE, A-L

AESENC—Perform One Round of an AES Encryption Flow

Opcode Instruction Op/ 64/32-bit CPUID Description
En Mode Feature
Flag
66 OF 38 DC /r RM VNV AES Perform one round of an
AESENC xmm1, xmm2/m128 AES encryption flow, operat-

ing on a 128-bit data (state)
from xmm1 with a 128-bit
round key from

xmm2/m128.
VEX.NDS.128.66.0F38.WIG DC /r RVM V/V Both AES Perform one round of an
VAESENC xmm1, xmm2, and AES encryption flow, operat-
xmm3/m128 AVX flags ingona 128-bit data (state)

from xmm2 with a 128-bit
round key from the
xmm3/m128; store the
result in xmm1,

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

This instruction performs a single round of an AES encryption flow using a round key
from the second source operand, operating on 128-bit data (state) from the first
source operand, and store the result in the destination operand.

Use the AESENC instruction for all but the last encryption rounds. For the last encryp-
tion round, use the AESENCCLAST instruction.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

AESENC

3-56 Vol. 2A AESENC—Perform One Round of an AES Encryption Flow

STATE « SRC1;

RoundKey « SRC2;

STATE « ShiftRows(STATE);

STATE « SubBytes(STATE);

STATE « MixColumns(STATE);
DEST[127:0] < STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESENC

STATE < SRC1;

RoundKey < SRCZ;

STATE < ShiftRows(STATE);

STATE & SubBytes(STATE);

STATE < MixColumns(STATE);
DEST[127:0] €& STATE XOR RoundKey;
DEST[VLMAX-1:128] € 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENC: __m128i _mm_aesenc (__m128i,

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.

AESENC—Perform One Round of an AES Encryption Flow

__m128i)

INSTRUCTION SET REFERENCE, A-L

Vol.2A 3-57

INSTRUCTION SET REFERENCE, A-L

AESENCLAST—Perform Last Round of an AES Encryption Flow

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
66 0OF 38DD /r RM VNV AES Perform the last round of an
AESENCLAST xmm1, xmm2/m128 AES encryption flow, operat-

ing on a 128-bit data (state)
from xmm1 with a 128-bit
round key from

xmm2/m128.
VEX.NDS.128.66.0F38.WIG DD /r RVM V/V Both AES Perform the last round of an
VAESENCLAST xmm1, xmm2, and AES encryption flow, operat-
xmm3/m128 AVX flags ing ona 128-bit data (state)

from xmm2 with a 128 bit
round key from
xmm3/m128; store the
result in xmm1,

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

This instruction performs the last round of an AES encryption flow using a round key
from the second source operand, operating on 128-bit data (state) from the first
source operand, and store the result in the destination operand.

128-bit Legacy SSE version: The first source operand and the destination operand
are the same and must be an XMM register. The second source operand can be an
XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand can be an XMM register or a 128-bit
memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation
AESENCLAST

STATE « SRCT1;
RoundKey « SRCZ;

3-58 Vol.2A AESENCLAST—Perform Last Round of an AES Encryption Flow

STATE « ShiftRows(STATE);

STATE « SubBytes(STATE);
DEST[127:0] < STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESENCLAST

STATE € SRC1;

RoundKey ¢ SRCZ;

STATE & ShiftRows(STATE);

STATE & SubBytes(STATE);
DEST[127:0] € STATE XOR RoundKey;
DEST[VLMAX-1:128] €« 0

Intel C/C++ Compiler Intrinsic Equivalent

INSTRUCTION SET REFERENCE, A-L

(V)AESENCLAST: __m128i _mm_aesenclast (__m128i,__m128i)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.

AESENCLAST—Perform Last Round of an AES Encryption Flow

Vol.2A 3-59

INSTRUCTION SET REFERENCE, A-L

AESIMC—Perform the AES InvMixColumn Transformation

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
66 OF 38 DB/t RM V/V AES Perform the InvMixColumn
AESIMC xmm1, xmm2/m128 transformation on a 128-bit

round key from
xmm2/m128 and store the
result in xmm1.

VEX.128.66.0F38.WIG DB /r RM VNV Both AES Perform the InvMixColumn
VAESIMC xmm1, xmm2/m128 and transformation on a 128-bit
AVX flags round key from
xmm2/m128 and store the
result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Perform the InvMixColumns transformation on the source operand and store the
result in the destination operand. The destination operand is an XMM register. The
source operand can be an XMM register or a 128-bit memory location.

Note: the AESIMC instruction should be applied to the expanded AES round keys
(except for the first and last round key) in order to prepare them for decryption using
the “Equivalent Inverse Cipher” (defined in FIPS 197).

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

AESIMC

DEST[127:0] « InvMixColumns(SRC);
DEST[VLMAX-1:128] (Unmodified)

VAESIMC
DEST[127:0] € InvMixColumns(SRC);

3-60 Vol.2A AESIMC—Perform the AES InvMixColumn Transformation

INSTRUCTION SET REFERENCE, A-L

DEST[VLMAX-1:128] <« C;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESIMC: __m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv I= 1111B.

AESIMC—Perform the AES InvMixColumn Transformation Vol. 2A 3-61

INSTRUCTION SET REFERENCE, A-L

AESKEYGENASSIST—AES Round Key Generation Assist

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
66 OF 3ADF /rib RMI VIV AES Assist in AES round key gen-
AESKEYGENASSIST xmm1, eration using an 8 bits
xmm2/m128, imm8 Round Constant (RCON)

specified in the immediate
byte, operating on 128 bits
of data specified in
xmmZ2/m128 and stores the
result in xmm1.

VEX.128.66.0F3A.WIG DF /rib RMI VIV Both AES Assist in AES round key gen-
VAESKEYGENASSIST xmm1, and eration using 8 bits Round
xmm2/m128, imm8 AVX flags Constant (RCON) specifiedin

the immediate byte, operat-
ing on 128 bits of data spec-
ified in xmm2/m128 and
stores the result in xmm1.

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
Description

Assist in expanding the AES cipher key, by computing steps towards generating a
round key for encryption, using 128-bit data specified in the source operand and an
8-bit round constant specified as an immediate, store the result in the destination
operand.

The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location.

128-bit Legacy SSE version:Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are
zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

Operation

AESKEYGENASSIST

3-62 Vol.2A AESKEYGENASSIST—AES Round Key Generation Assist

INSTRUCTION SET REFERENCE, A-L

X3[31:0] « SRC[127:96];

X2[31:0] « SRC [95: 64];

X1[31:0] « SRC [63: 32];

X0[31:0] « SRC[31: 0];

RCONI[31:0] « ZeroExtend(Imm8[7:0]);

DEST[31:0] « SubWord(X1);

DEST[63:32] « RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] « SubWord(X3);

DEST[127:96] < RotWord(SubWord(X3)) XOR RCON;
DEST[VLMAX-1:128] (Unmodified)

VAESKEYGENASSIST

X3[31:0] €« SRC[127:96];

X2[31:0] € SRC[95: 64];

X1[31:0] ¢ SRC[63: 32];

X0[31:0] ¢ SRC[31:0];

RCONI[31:0] € ZeroExtend(Imm8[7:01);

DEST[31:0] ¢ SubWord(X1);

DEST[63:32] ¢ RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] < SubWord(X3);

DEST[127:96] €< RotWord(SubWord(X3)) XOR RCON;
DEST[VLMAX-1:128] €« O;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESKEYGENASSIST: __m128i _mm_aesimc (__m128i, const int)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.

AESKEYGENASSIST—AES Round Key Generation Assist Vol.2A 3-63

INSTRUCTION SET REFERENCE, A-L

AND—Logical AND

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode

24 ib AND AL, imm8 RM Valid Valid AL AND imm8.

25 iw AND AX, imm16 RM Valid Valid AX AND imm16.

25 id AND EAX, imm32 RM Valid Valid EAX AND imm32.

REXW +25id ANDRAX,imm32 RM Valid N.E. RAX AND imm32 sign-
extended to 64-bits.

80/4 ib AND r/m8, imm8 MR Valid Valid r/m8 AND imm8.

REX+80/4ib ANDr/m8,imm8 MR Valid N.E. r/m8 AND imm8.

81 /4 iw AND r/m16, MR Valid Valid r/m16 AND imm16.

imm16
81 /4 id AND r/m32, MR Valid Valid r/m32 AND imm32.
imm32

REXW +81/4 AND r/mé64, MR Valid N.E. r/m64 AND imm32 sign

id imm32 extended to 64-bits.

83/4ib AND r/m16, imm8 MR Valid Valid r/m16 AND imm8 (sign-
extended).

83/4ib AND r/m32, imm8 MR Valid Valid r/m32 AND imm8 (sign-
extended).

REXW +83/4 AND r/m64, iiém8 MR Valid N.E. r/m64 AND imm8 (sign-

ib extended).

20 /r AND r/m8, r8 Ml Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8, r8' Ml Valid N.E. r/m64 AND r8 (sign-
extended).

211/r AND r/m16,r16 Ml Valid Valid r/m16 AND r16.

211/r AND r/m32,r32 Ml Valid Valid r/m32 AND r32.

REXW +21/r ANDr/m64, 64 Ml Valid N.E. r/m64 AND r32.

221r AND r8, r/m8 | Valid Valid r8 AND r/m8.

REX +22 /r AND r8’, /m8’ | Valid N.E. r/m64 AND r8 (sign-
extended).

23/r AND r16, r/mi16 | Valid Valid r16 AND r/m16.

23/r AND r32, r/m32 | Valid Valid r32 AND r/m32.

REXW +23/r AND r64, r/m64 | Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

3-64 Vol. 2A

AND—Logical AND

INSTRUCTION SET REFERENCE, A-L

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
M ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
Description

Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination
operand can be a register or a memory location. (However, two memory operands
cannot be used in one instruction.) Each bit of the result is set to 1 if both corre-
sponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

AND—Logical AND Vol.2A 3-65

INSTRUCTION SET REFERENCE, A-L

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-66 Vol. 2A AND—Logical AND

INSTRUCTION SET REFERENCE, A-L

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag

66 OF 54 /r RM VNV SSE2 Return the bitwise logical

ANDPD xmm1, xmm2/m128 AND of packed double-
precision floating-point
values in xmm1 and
xmmZ2/m128.

VEX.NDS.128.66.0F.WIG 54 /r RVM VNV AVX Return the bitwise logical

VANDPD xmm1, xmm2, AND of packed double-

xmm3/m128 precision floating-point
values in xmm2 and
xmm3/mem.

VEX.NDS.256.66.0F.WIG 54 /r RVM V/V AVX Return the bitwise logical

VANDPD ymm1, ymm2, AND of packed double-

ymm3/m256 precision floating-point
values in ymm2 and
ymm3/mem.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA

Description

Performs a bitwise logical AND of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values Vol.2A 3-67

INSTRUCTION SET REFERENCE, A-L

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

ANDPD (128-bit Legacy SSE version)

DEST[63:0] €< DEST[63:0] BITWISE AND SRC[63:0]
DEST[127:64] < DEST[127:64] BITWISE AND SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VANDPD (VEX.128 encoded version)

DEST[63:0] ¢« SRC1[63:0]1 BITWISE AND SRC2[63:0]
DEST[127:64] € SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[VLMAX-1:128] € 0

VANDPD (VEX.256 encoded version)

DEST[63:0] €< SRC1[63:0]1 BITWISE AND SRC2[63:0]
DEST[127:64] € SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[191:128] < SRC1[191:128] BITWISE AND SRC2[191:128]
DEST[255:192] €< SRC1[255:192] BITWISE AND SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent
ANDPD: __m128d _mm_and_pd(__m128da, __ m128db)
VANDPD: _ m256d _mm256_and_pd (__m256d a, _ m256d b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4.

3-68 Vol.2A ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point
Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
OF 54 /r RM VNV SSE Bitwise logical AND of
ANDPS xmm1, xmm2/m128 xmmez/m128and xmmT.
VEX.NDS.128.0F.WIG 54 /r RVM V/V AVX Return the bitwise logical
VANDPS xmm1,xmm2, xmm3/m128 AND of packed single-

precision floating-point
values in xmm2 and

xmm3/mem.
VEX.NDS.256.0F.WIG 54 /r RVM VIV AVX Return the bitwise logical
VANDPS ymm1, ymm2, ymm3/m256 AND of packed single-

precision floating-point
values in ymm2 and

ymm3/mem.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA

Description

Performs a bitwise logical AND of the four or eight packed single-precision floating-
point values from the first source operand and the second source operand, and stores
the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values Vol.2A 3-69

INSTRUCTION SET REFERENCE, A-L

Operation

ANDPS (128-bit Legacy SSE version)

DEST[31:0] €« DEST[31:0] BITWISE AND SRC[31:0]
DEST[63:32] € DEST[63:32] BITWISE AND SRC[63:32]
DEST[95:64] € DEST[95:64] BITWISE AND SRC[95:64]
DEST[127:96] < DEST[127:96] BITWISE AND SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VANDPS (VEX.128 encoded version)

DEST[31:0] ¢« SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] € SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] € SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] < SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[VLMAX-1:128] ¢« 0

VANDPS (VEX.256 encoded version)

DEST[31:0] ¢« SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] € SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] € SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] < SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[159:128] < SRC1[159:128] BITWISE AND SRC2[159:128]
DEST[191:160]¢ SRC1[191:160] BITWISE AND SRC2[191:160]
DEST[223:192] < SRC1[223:192] BITWISE AND SRC2[223:192]
DEST[255:224] < SRC1[255:224] BITWISE AND SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent
ANDPS: __m128_mm_and_ps(__m128a,__m128Db)
VANDPS: _ m256 _mm256_and_ps (__m256 a,__m256 b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4.

3-70 Vol. 2A ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
66 OF 55 /r RM VNV SSE2 Bitwise logical AND NOT of
ANDNPD xmm 1, xmm2/m128 xmmez/m128 and xmm.
VEX.NDS.128.66.0F.WIG 55 /r RVM V/V AVX Return the bitwise logical
VANDNPD xmm1, xmm2, AND NOT of packed double-
xmm3/m128 precision floating-point
values in xmm2 and
xmm3/mem.
VEX.NDS.256.66.0F.WIG 55/r RVM V/V AVX Return the bitwise logical
VANDNPD ymm1, ymm2, AND NOT of packed double-
ymm3/m256 precision floating-point
values in ymm2 and
ymm3/mem.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a bitwise logical AND NOT of the two or four packed double-precision
floating-point values from the first source operand and the second source operand,
and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values Vol.2A 3-71

INSTRUCTION SET REFERENCE, A-L

Operation

ANDNPD (128-bit Legacy SSE version)

DEST[63:0] <« (NOT(DEST[63:0])) BITWISE AND SRC[63:0]
DEST[127:64] < (NOT(DEST[127:64])) BITWISE AND SRC[127:64]
DEST[VLMAX-1:128] (Unmodified)

VANDNPD (VEX.128 encoded version)

DEST[63:0] €« (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] < (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[VLMAX-1:128] ¢« 0

VANDNPD (VEX.256 encoded version)

DEST[63:0] < (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] < (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[191:128] < (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128]
DEST[255:192] < (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent
ANDNPD: __m128d _mm_andnot_pd(__m128da, __m128d b)
VANDNPD: __m256d _mm256_andnot_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4.

3-72 Vol.2A ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
OF 55 /r RM VNV SSE Bitwise logical AND NOT of
ANDNPS xmm1, xmm2/m128 xmmez/m128 and xmm.
VEX.NDS.128.0F.WIG 55 /r RVM V/V AVX Return the bitwise logical
VANDNPS xmm1, xmm2, AND NOT of packed single-
xmm3/m128 precision floating-point
values in xmmZ2 and
xmm3/mem.
VEX.NDS.256.0F.WIG 55 /r RVM V/V AVX Return the bitwise logical
VANDNPS ymm1, ymm2, AND NOT of packed single-
ymm3/m256 precision floating-point
values in ymm2 and
ymm3/mem.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.wvwv (r) ModRM:r/m (r) NA
Description

Inverts the bits of the four packed single-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the four packed
single-precision floating-point values in the source operand (second operand) and
the temporary inverted result, and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit
memory location. The destination operand is an XMM register. The upper bits
(VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values Vol.2A 3-73

INSTRUCTION SET REFERENCE, A-L

Operation

ANDNPS (128-bit Legacy SSE version)

DEST[31:0] ¢« (NOT(DEST[31:0])) BITWISE AND SRC[31:0]
DEST[63:32] € (NOT(DEST[63:32])) BITWISE AND SRC[63:32]
DEST[95:64] € (NOT(DEST[95:64])) BITWISE AND SRC[95:64]
DEST[127:96] < (NOT(DEST[127:96])) BITWISE AND SRC[127:96]
DEST[VLMAX-1:128] (Unmodified)

VANDNPS (VEX.128 encoded version)

DEST[31:0] < (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] € (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] < (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] < (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[VLMAX-1:128] ¢« 0

VANDNPS (VEX.256 encoded version)

DEST[31:0] <« (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] € (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] < (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] < (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[159:128] < (NOT(SRC1[159:1287)) BITWISE AND SRC2[159:128]
DEST[191:160]¢ (NOT(SRC1[191:160])) BITWISE AND SRC2[191:160]
DEST[223:192] < (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192]
DEST[255:224] < (NOT(SRC1[255:2247)) BITWISE AND SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent
ANDNPS: __m128 _mm_andnot_ps(__m1283a,_m128b)
VANDNPS: __ m256 _mm256_andnot_ps (__m256 3, __ m256 b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4.

3-74 Vol. 2A ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

ARPL—Adjust RPL Field of Segment Selector

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
63/r ARPL /mi16,r16 NP N.E Valid Adjust RPL of r/m16 to not
less than RPL of r76.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP ModRM:r/m (w) ModRM:reg (r) NA NA
Description

Compares the RPL fields of two segment selectors. The first operand (the destination
operand) contains one segment selector and the second operand (source operand)
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the
RPL field of the destination operand is less than the RPL field of the source operand,
the ZF flag is set and the RPL field of the destination operand is increased to match
that of the source operand. Otherwise, the ZF flag is cleared and no change is made
to the destination operand. (The destination operand can be a word register or a
memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it
can also be used by applications). It is generally used to adjust the RPL of a segment
selector that has been passed to the operating system by an application program to
match the privilege level of the application program. Here the segment selector
passed to the operating system is placed in the destination operand and segment
selector for the application program’s code segment is placed in the source operand.
(The RPL field in the source operand represents the privilege level of the application
program.) Execution of the ARPL instruction then ensures that the RPL of the
segment selector received by the operating system is no lower (does not have a
higher privilege) than the privilege level of the application program (the segment
selector for the application program’s code segment can be read from the stack
following a procedure call).

This instruction executes as described in compatibility mode and legacy mode. It is
not encodable in 64-bit mode.

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory
Management,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, for more information about the use of this instruction.

ARPL—Adjust RPL Field of Segment Selector Vol.2A 3-75

INSTRUCTION SET REFERENCE, A-L

Operation

IF 64-BIT MODE
THEN
See MOVSXD;
ELSE
IF DEST[RPL) < SRC[RPL)
THEN
ZF «1;
DEST[RPL) « SRC[RPL);
ELSE
IF < Q;
Fl;
Fl;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of
the source operand; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.

3-76 Vol.2A ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-L

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Not applicable.

ARPL—Adjust RPL Field of Segment Selector Vol.2A 3-77

INSTRUCTION SET REFERENCE, A-L

BLENDPD — Blend Packed Double Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag
66 0F3A0D /rib RMI V/V SSE4_1 Select packed DP-FP values
BLENDPD xmm1, xmm2/m128, from xmm1 and
imm8 xmmz2/m128 from mask

specified in imm8 and store
the values into xmm]1.

VEX.NDS.128.66.0F3AWIGOD /rib RVMI V/V AVX Select packed double-
VBLENDPD xmm1, xmm2, precision floating-point
xmm3/m128, imm8 Values from xmmZ2 and

xmm3/m128 from mask in
imm8 and store the values

in xmm1.
VEX.NDS.256.66.0F3AWIGOD /rib RVMI V/V AVX Select packed double-
VBLENDPD ymm1, ymm2, precision floating-point
ymm3/m256, imm8 Values from ymm2 and

ymm3/m256 from mask in
imm8 and store the values

inymm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
RVMI ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8[3:0]

Description

Double-precision floating-point values from the second source operand (third

operand) are conditionally merged with values from the first source operand (second
operand) and written to the destination operand (first operand). The immediate bits
[3:0] determine whether the corresponding double-precision floating-point value in
the destination is copied from the second source or first source. If a bit in the mask,
corresponding to a word, is “1", then the double-precision floating-point value in the
second source operand is copied, else the value in the first source operand is copied.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

VEX.128 encoded version: the first source operand is an XMM register. The second
source operand is an XMM register or 128-bit memory location. The destination

3-78 Vol.2A BLENDPD — Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM
register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

BLENDPD (128-bit Legacy SSE version)
IF (IMM8[0] = O)THEN DEST[63:0] €< DEST[63:0]
ELSE DEST [63:0] € SRC[63:0] FI
IF (IMM8[1] = O) THEN DEST[127:64] < DEST[127:64]
ELSE DEST [127:64] € SRC[127:64] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDPD (VEX.128 encoded version)
IF (IMM8[0] = 0)THEN DEST[63:0] < SRC1[63:0]
ELSE DEST [63:0] €< SRC2[63:0] FI
IF (IMM8[1] = 0) THEN DEST[127:64] < SRC1[127:64]
ELSE DEST [127:64] € SRC2[127:64] FI
DEST[VLMAX-1:128] < 0

VBLENDPD (VEX.256 encoded version)

IF (IMM8[0] = 0)THEN DEST[63:0] < SRC1[63:0]
ELSE DEST [63:0] < SRC2[63:0] FI

IF (IMM8[1] = 0) THEN DEST[127:64] < SRC1[127:64]
ELSE DEST [127:64] € SRC2[127:64] FI

IF (IMM8[2] = 0) THEN DEST[191:128] € SRC1[191:128]
ELSE DEST [191:128] < SRC2[191:128] FI

IF (IMM8[3] = 0) THEN DEST[255:192] ¢ SRC1[255:192]
ELSE DEST [255:192] €« SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent
BLENDPD: __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask);

VBLENDPD: __m256d _mm256_blend_pd (__m256d a, __m256d b, const int mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.

BLENDPD — Blend Packed Double Precision Floating-Point Values Vol.2A 3-79

INSTRUCTION SET REFERENCE, A-L

BLENDPS — Blend Packed Single Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
66 0F3A0C/rib RMI V/V SSE4_1 Select packed single
BLENDPS xmm1, xmm2/m128, precision floating-point
imm8 values from xmm1 and

xmmZ2/m128 from mask
specified in imm8 and store
the values into xmm1.

VEX.NDS.128.66.0F3AWIGOC/rib RVMI V/V AVX Select packed single-
VBLENDPS xmm1, xmm2, precision floating-point
xmm3/m128, imm8 values from xmm2 and

xmm3/m128 from mask in
imm8 and store the values

in xmm1.
VEX.NDS.256.66.0F3AWIGOC/rib RVMI V/V AVX Select packed single-
VBLENDPS ymm1, ymm2, precision floating-point
ymm3/m256, imm8 values from ymmZ2 and

ymm3/m256 from mask in
imm8 and store the values

inymm1.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
RVMI ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8

Description

Packed single-precision floating-point values from the second source operand (third
operand) are conditionally merged with values from the first source operand (second
operand) and written to the destination operand (first operand). The immediate bits
[7:0] determine whether the corresponding single precision floating-point value in

the destination is copied from the second source or first source. If a bit in the mask,
corresponding to a word, is “1", then the single-precision floating-point value in the
second source operand is copied, else the value in the first source operand is copied.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit
memory location. The destination is not distinct from the first source XMM register
and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.

VEX.128 encoded version: The first source operand an XMM register. The second
source operand is an XMM register or 128-bit memory location. The destination

3-80 Vol.2A BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM
register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second
source operand can be a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

Operation

BLENDPS (128-bit Legacy SSE version)

IF (IMM8[0] = 0) THEN DEST[31:0] <DEST[31:0]
ELSE DEST [31:0] < SRC[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] < DEST[63:32]
ELSE DEST [63:32] € SRC[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] < DEST[95:64]
ELSE DEST [95:64] < SRC[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] < DEST[127:96]
ELSE DEST [127:96] €< SRC[127:96] FI

DEST[VLMAX-1:128] (Unmodified)

VBLENDPS (VEX.128 encoded version)

IF (IMM8[0] = 0) THEN DEST[31:0] €SRC1[31:0]
ELSE DEST [31:0] €« SRC2[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] < SRC1[63:32]
ELSE DEST [63:32] ¢ SRC2[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] < SRC1[95:64]
ELSE DEST [95:64] € SRC2[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] < SRC1[127:96]
ELSE DEST [127:96] € SRC2[127:96] FI

DEST[VLMAX-1:128] < 0

VBLENDPS (VEX.256 encoded version)

IF (IMM8[0] = 0) THEN DEST[31:0] €SRC1[31:0]
ELSE DEST [31:0] €« SRC2[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] < SRC1[63:32]
ELSE DEST [63:32] ¢ SRC2[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] < SRC1[95:64]
ELSE DEST [95:64] € SRC2[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] < SRC1[127:96]
ELSE DEST [127:96] < SRC2[127:96] FI

IF (IMM8[4] = 0) THEN DEST[159:128] € SRC1[159:128]
ELSE DEST [159:128] < SRC2[159:128] FI

IF (IMM8[5] = 0) THEN DEST[191:160] € SRC1[191:160]
ELSE DEST [191:160] < SRC2[191:160] FI

BLENDPS — Blend Packed Single Precision Floating-Point Values Vol.2A 3-81

INSTRUCTION SET REFERENCE, A-L

IF (IMM8[6] = 0) THEN DEST[223:192] €& SRC1[223:192]
ELSE DEST [223:192] < SRC2[223:192] FI

IF (IMM8[7] = 0) THEN DEST[255:224] €< SRC1[255:224]
ELSE DEST [255:224] < SRCZ2[255:224] FI.

Intel C/C++ Compiler Intrinsic Equivalent
BLENDPS: __m128 _mm_blend_ps (__m128 v1, _m128vZ2, const int mask);

VBLENDPS: __m256 _mm256_blend_ps (__m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4.

3-82 Vol.2A BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

BLENDVPD — Variable Blend Packed Double Precision Floating-Point
Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature
Flag

66 OF 3815 /r RMO V/V SSE4_1 Select packed DP FP values
BLENDVPD xmm1, xmm2/m128, from xmmT and xmm¢ from
<XMMO> mask specified in XMMO0 and

store the values in xmm]1.
VEX.NDS.128.66.0F3A.W0 4B /r /is4 RVMR V/V AVX Conditionally copy double-
VBLENDVPD xmm1, xmm2, precision floating-point

values from xmm2 or
xmm3/m128 to xmm1,
based on mask bits in the
mask operand, xmm4.

xmm3/m128, xmm4

VEX.NDS.256.66.0F3AW0 4B /r /is4 RVMR V/V AVX Conditionally copy double-

VBLENDVPD ymm1, ymm2, precision floating-point

ymm3/m256, ymm4 values from ymm2 or
ymm3/m256 to ymm1,

based on mask bits in the
mask operand, ymm4.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMO ModRMrreg (r, w) ModRM:r/m (r) implicit XMMO NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
Description

Conditionally copy each quadword data element of double-precision floating-point
value from the second source operand and the first source operand depending on
mask bits defined in the mask register operand. The mask bits are the most signifi-
cant bit in each quadword element of the mask register.

Each quadword element of the destination operand is copied from:

®* the corresponding quadword element in the second source operand, If a mask bit
is"1"; or

® the corresponding quadword element in the first source operand, If a mask bit is
\\Oll

The register assignment of the implicit mask operand for BLENDVPD is defined to be
the architectural register XMMQO.

BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Vol.2A 3-83

INSTRUCTION SET REFERENCE, A-L

128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural

register XMMO. An attempt to execute BLENDVPD with a VEX prefix will cause #UD.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8([7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM
register (destination register) are zeroed. VEX.W must be 0, otherwise, the instruc-
tion will #UD.

VEX.256 encoded version: The first source operand and destination operand are YMM
registers. The second source operand can be a YMM register or a 256-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD.

VBLENDVPD permits the mask to be any XMM or YMM register. In contrast,
BLENDVPD treats XMMO implicitly as the mask and do not support non-destructive
destination operation.

Operation

BLENDVPD (128-bit Legacy SSE version)
MASK < XMMO
IF (MASK[63] = 0) THEN DEST[63:0] < DEST[63:0]
ELSE DEST [63:0] € SRC[63:0] FI
IF (MASK[127] = O) THEN DEST[127:64] < DEST[127:64]
ELSE DEST [127:64] < SRC[127:64] FI
DEST[VLMAX-1:128] (Unmodified)

VBLENDVPD (VEX.128 encoded version)
MASK <« SRC3
IF (MASK[63] = 0) THEN DEST[63:0] < SRC1[63:0]
ELSE DEST [63:0] ¢ SRC2[63:0] FI
IF (MASK[127] = 0) THEN DEST[127:64] < SRC1[127:64]
ELSE DEST [127:64] < SRC2[127:64] FI
DEST[VLMAX-1:128] ¢« 0

VBLENDVPD (VEX.256 encoded version)

MASK <« SRC3

IF (MASK[63] = 0) THEN DEST[63:0] < SRC1[63:0]
ELSE DEST [63:0] ¢ SRC2[63:0] FI

IF (MASK[127] = 0) THEN DEST[127:64] < SRC1[127:64]
ELSE DEST [127:64] < SRC2[127:64] FI

3-84 Vol. 2A BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

IF (MASK[191] = 0) THEN DEST[191:128] € SRC1[191:128]
ELSE DEST [191:128] €« SRCZ2[191:128] FI

IF (MASK[255] = 0) THEN DEST[255:192] € SRC1[255:192]
ELSE DEST [255:192] €« SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent
BLENDVPD: __m128d _mm_blendv_pd(__m128d v1,_m128dv2,__m128dv3);
VBLENDVPD: __m128 _mm_blendv_pd (_m128da, __m128db, __m128d mask);

VBLENDVPD: __m256 _mm256_blendv_pd (__m256d a, _ m256d b, __m256d mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.W = 1.

BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Vol.2A 3-85

INSTRUCTION SET REFERENCE, A-L

BLENDVPS — Variable Blend Packed Single Precision Floating-Point
Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
66 0F 3814 /r RMO VNV SSE4_1 Select packed single
BLENDVPS xmm1, xmm2/m128, precision floating-point
<XMMO> values from xmm1 and

xmmZ2/m128 from mask
specified in XMMQ and store
the values into xmm1.

VEX.NDS.128.66.0F3A.WO0 4A /r /is4 RVMR V/V AVX Conditionally copy single-
VBLENDVPS xmm1, xmm2, precision floating-point
xmm3/m128, xmmé4 values from xmm2 or

xmm3/m128 to xmm1,
based on mask bits in the
specified mask operand,

xmm4.
VEX.NDS.256.66.0F3A.WO0 4A /r /is4 RVMR V/V AVX Conditionally copy single-
VBLENDVPS ymm1, ymm2, precision floating-point
ymm3/m256, ymm4 values from ymmZ or

ymm3/m256 to ymm1,

based on mask bits in the
specified mask register,

ymm4.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMO ModRM:reg (r, w) ModRM:r/m (r) implicit XMMO NA
RVMR ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8[7:4]

Description

Conditionally copy each dword data element of single-precision floating-point value
from the second source operand and the first source operand depending on mask bits
defined in the mask register operand. The mask bits are the most significant bit in
each dword element of the mask register.

Each quadword element of the destination operand is copied from:

® the corresponding dword element in the second source operand, If a mask bit is
\\1"; Or

® the corresponding dword element in the first source operand, If a mask bit is “0"

3-86 Vol.2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

The register assignment of the implicit mask operand for BLENDVPS is defined to be
the architectural register XMMQO.

128-bit Legacy SSE version: The first source operand and the destination operand is
the same. Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged. The mask register operand is implicitly defined to be the architectural

register XMMO0. An attempt to execute BLENDVPS with a VEX prefix will cause #UD.

VEX.128 encoded version: The first source operand and the destination operand are
XMM registers. The second source operand is an XMM register or 128-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8([7] is ignored. The upper bits (VLMAX-1:128) of the corresponding YMM
register (destination register) are zeroed. VEX.W must be 0, otherwise, the instruc-
tion will #UD.

VEX.256 encoded version: The first source operand and destination operand are YMM
registers. The second source operand can be a YMM register or a 256-bit memory
location. The mask operand is the third source register, and encoded in bits[7:4] of
the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode,
imm8[7] is ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPS permits the mask to be any XMM or YMM register. In contrast,
BLENDVPS treats XMMO implicitly as the mask and do not support non-destructive
destination operation.

Operation

BLENDVPS (128-bit Legacy SSE version)

MASK € XMMO

IF (MASK[31] = 0) THEN DEST[31:0] € DEST[31:0]
ELSE DEST [31:0] €« SRC[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] €< DEST[63:32]
ELSE DEST [63:32] € SRC[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] < DEST[95:64]
ELSE DEST [95:64] € SRC[95:64] FI

IF (MASK[127] = 0) THEN DEST[127:96] < DEST[127:96]
ELSE DEST [127:96] €« SRC[127:96] FI

DEST[VLMAX-1:128] (Unmodified)

VBLENDVPS (VEX.128 encoded version)

MASK €« SRC3

IF (MASK[31] = 0) THEN DEST[31:0] € SRC1[31:0]
ELSE DEST [31:0] €« SRC2[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] €< SRC1[63:32]
ELSE DEST [63:32] € SRC2[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] < SRC1[95:64]
ELSE DEST [95:64] € SRC2[95:64] FI

BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values Vol.2A 3-87

INSTRUCTION SET REFERENCE, A-L

IF (MASK[127] = 0) THEN DEST[127:96] < SRC1[127:96]
ELSE DEST [127:96] < SRCZ2[127:96] FI
DEST[VLMAX-1:128] < O

VBLENDVPS (VEX.256 encoded version)

MASK <« SRC3

IF (MASK[31] = 0) THEN DEST[31:0] €« SRC1[31:0]
ELSE DEST [31:0] ¢ SRC2[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] ¢ SRC1[63:32]
ELSE DEST [63:32] € SRC2[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] € SRC1[95:64]
ELSE DEST [95:64] € SRC2[95:64] FI

IF (MASK[127] = 0) THEN DEST[127:96] €< SRC1[127:96]
ELSE DEST [127:96] €« SRC2[127:96] FI

IF (MASK[159] = 0) THEN DEST[159:128] € SRC1[159:128]
ELSE DEST [159:128] € SRC2[159:128] FI

IF (MASK[191] = 0) THEN DEST[191:160] € SRC1[191:160]
ELSE DEST [191:160] €« SRC2[191:160] FI

IF (MASK[223] = 0) THEN DEST[223:192] ¢ SRC1[223:192]
ELSE DEST [223:192] € SRC2[223:192] FI

IF (MASK[255] = 0) THEN DEST[255:224] € SRC1[255:224]
ELSE DEST [255:224] € SRC2[255:224] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS: __m128 _mm_blendv_ps(__m128v1,_m128v2,__m128v3);
VBLENDVPS: __m128 _mm_blendv_ps (__m1283a,__m128b,__m128 mask);
VBLENDVPS: __ m256 _mm256_blendv_ps (__m256 a,__ m256 b, __m256 mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.W = 1.

3-88 Vol.2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

BOUND—Check Array Index Against Bounds

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
62/r BOUND r16, RM Invalid Valid Check if r16 (array index) is
m16&16 within bounds specified by
m16&16.
62/r BOUND r32, RM Invalid Valid Check if r32 (array index) is
m32&32 within bounds specified by
m16&16.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r) ModRM:r/m (r) NA NA
Description

BOUND determines if the first operand (array index) is within the bounds of an array
specified the second operand (bounds operand). The array index is a signed integer
located in a register. The bounds operand is a memory location that contains a pair of
signed doubleword-integers (when the operand-size attribute is 32) or a pair of
signed word-integers (when the operand-size attribute is 16). The first doubleword
(or word) is the lower bound of the array and the second doubleword (or word) is the
upper bound of the array. The array index must be greater than or equal to the lower
bound and less than or equal to the upper bound plus the operand size in bytes. If the
index is not within bounds, a BOUND range exceeded exception (#BR) is signaled.
When this exception is generated, the saved return instruction pointer points to the
BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and
upper limits of the array) is usually placed just before the array itself, making the
limits addressable via a constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra
bus cycles to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64bit Mode
THEN
#UD;
ELSE
IF (Arraylndex < LowerBound OR Arraylndex > UpperBound)
(* Below lower bound or above upper bound *)

BOUND—Check Array Index Against Bounds Vol.2A 3-89

INSTRUCTION SET REFERENCE, A-L

THEN #BR; FI;
Fl;
Flags Affected
None.

Protected Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.
If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.
If the LOCK prefix is used.

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.
If the LOCK prefix is used.

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

3-90 Vol.2A BOUND—Check Array Index Against Bounds

INSTRUCTION SET REFERENCE, A-L

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

BOUND—Check Array Index Against Bounds Vol.2A 3-91

INSTRUCTION SET REFERENCE, A-L

BSF—BIt Scan Forward

Opcode Instruction Op/ 64-bit Compat/ Description

En Mode Leg Mode
OFBC/r BSF r16, r/m16 RM Valid Valid Bit scan forward on r/m16.
OFBC/r BSF r32, r/m32 RM Valid Valid Bit scan forward on r/m32.
REXW + OF BC BSF r64, r/m64 RM Valid N.E. Bit scan forward on r/m64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Searches the source operand (second operand) for the least significant set bit (1 bit).
If a least significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit 0 of the
source operand. If the content of the source operand is 0, the content of the destina-
tion operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFSRC=0
THEN
ZF < 1;
DEST is undefined;
ELSE
ZF < 0O;
temp « O;
WHILE Bit(SRC, temp) =0
DO
temp « temp + 1;
DEST « temp;
OD;
Fl;

3-92 Vol.2A BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-L

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

BSF—Bit Scan Forward Vol.2A 3-93

INSTRUCTION SET REFERENCE, A-L

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

3-94 Vol.2A BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-L

BSR—Bit Scan Reverse

Opcode Instruction Op/ 64-bit Compat/ Description

En Mode Leg Mode
OFBD/r BSR r16, r/m16 RM Valid Valid Bit scan reverse on r/m16.
OFBD /r BSR r32, r/m32 RM Valid Valid Bit scan reverse on r/m32.
REX.W + OF BD BSR r64, r/m64 RM Valid N.E. Bit scan reverse on r/mé64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Searches the source operand (second operand) for the most significant set bit (1 bit).
If a most significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit 0 of the
source operand. If the content source operand is 0, the content of the destination
operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFSRC=0
THEN
ZF < 1;
DEST is undefined;
ELSE
ZF < 0O;
temp « OperandSize - 1;
WHILE Bit(SRC, temp) = 0
DO
temp < temp - 1;
DEST « temp;
oD;
Fl;

BSR—BIt Scan Reverse Vol.2A 3-95

INSTRUCTION SET REFERENCE, A-L

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

3-96 Vol.2A BSR—BIt Scan Reverse

INSTRUCTION SET REFERENCE, A-L

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

BSR—BIt Scan Reverse Vol.2A 3-97

INSTRUCTION SET REFERENCE, A-L

BSWAP—Byte Swap

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
OF C8+rd BSWAP r32 0 Valid* Valid Reverses the byte order of
a 32-bit register.
REX.W + OF BSWAP r64 0 Valid N.E. Reverses the byte order of
C8+rd a 64-bit register.
NOTES:

* See IA-32 Architecture Compatibility section below.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
0] opcode + rd (r, w) NA NA NA
Description

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is
provided for converting little-endian values to big-endian format and vice versa. To
swap bytes in a word value (16-bit register), use the XCHG instruction. When the
BSWAP instruction references a 16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility

The BSWAP instruction is not supported on IA-32 processors earlier than the
Intel486™ processor family. For compatibility with this instruction, software
should include functionally equivalent code for execution on Intel processors earlier
than the Intel486 processor family.

Operation

TEMP « DEST
IF 64-bit mode AND OperandSize = 64
THEN

DEST[7:0] « TEMP[63:56];
DEST[15:8] « TEMP[55:48];
DEST[23:16] « TEMP[47:40];
DEST[31:24] « TEMP[39:32];
DEST[39:32] « TEMP[31:24];

3-98 Vol.2A BSWAP—Byte Swap

INSTRUCTION SET REFERENCE, A-L

DEST[47:40] « TEMP[23:16];
DEST[55:48] « TEMP[15:8];
DEST[63:56] « TEMP[7:0];
ELSE
DEST[7:0] < TEMP[31:24];
DEST[15:8] « TEMP[23:16];
DEST[23:16] « TEMP[15:8];
DEST[31:24] « TEMP[7:0];
FI;

Flags Affected
None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

BSWAP—Byte Swap Vol.2A 3-99

INSTRUCTION SET REFERENCE, A-L

BT—Bit Test
Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
OF A3 BT r/m16,r16 MR Valid Valid Store selected bit in CF flag.
OF A3 BT r/m32, r32 MR Valid Valid Store selected bit in CF flag.
REXW + OF A3 BT r/mb4, r64 MR Valid N.E. Store selected bit in CF flag.
OFBA /4 ib BT r/m16,imm8 Ml Valid Valid Store selected bit in CF flag.
OFBA/4ib BT r/m32, imm8 Ml Valid Valid Store selected bit in CF flag.
REXW + OF BA BT r/m64, imm8 Ml Valid N.E. Store selected bit in CF flag.
/4 ib
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r) ModRM:reg (r) NA NA

M ModRM:r/m (r) imm8 NA NA
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset (specified by the second operand) and
stores the value of the bit in the CF flag. The bit base operand can be a register or a
memory location; the bit offset operand can be a register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode).

* If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. In this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit
operands) of the immediate bit offset are stored in the immediate bit offset field, and
the high-order bits are shifted and combined with the byte displacement in the
addressing mode by the assembler. The processor will ignore the high order bits if
they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the
memory address for a 32-bit operand size, using by the following relationship:

3-100 Vol.2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-L

Effective Address + (4 * (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand,
using this relationship:

Effective Address + (2 * (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given
bit. When using this bit addressing mechanism, software should avoid referencing
areas of memory close to address space holes. In particular, it should avoid refer-
ences to memory-mapped I/0 registers. Instead, software should use the MOV
instructions to load from or store to these addresses, and use the register form of
these instructions to manipulate the data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

CF « Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF,
SF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

BT—Bit Test Vol.2A 3-101

INSTRUCTION SET REFERENCE, A-L

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-102 Vol. 2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-L

BTC—Bit Test and Complement

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode

OF BB BTC /m16,r16 MR Valid Valid Store selected bit in CF flag
and complement.

OF BB BTC r/m32, r32 MR Valid Valid Store selected bit in CF flag
and complement.

REXW + OF BB BTC r/m64, r64 MR Valid N.E. Store selected bit in CF flag
and complement.

OFBA/7 ib BTC /m16, imm8 Ml Valid Valid Store selected bit in CF flag
and complement.

OFBA/7 ib BTC /m32, imm8 Ml Valid Valid Store selected bit in CF flag
and complement.

REXW + OF BA BTC r/m64, imm8 Ml Valid N.E. Store selected bit in CF flag

/7 ib and complement.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
Ml ModRM:r/m (r, w) imm8 NA NA
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and complements the selected bit in the bit string. The
bit base operand can be a register or a memory location; the bit offset operand can
be a register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “"BT—Bit Test” in this chapter for more information on this addressing
mechanism.

BTC—Bit Test and Complement Vol.2A 3-103

INSTRUCTION SET REFERENCE, A-L

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF « Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) «— NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF
flag is unaffected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

3-104 Vol. 2A BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-L

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

BTC—Bit Test and Complement Vol.2A 3-105

INSTRUCTION SET REFERENCE, A-L

BTR—BIt Test and Reset

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode

OF B3 BTRr/mi6,r16 MR Valid Valid Store selected bit in CF flag
and clear.

OF B3 BTR r/m32, r32 MR Valid Valid Store selected bit in CF flag
and clear.

REXW + OF B3 BTR r/m64, r64 MR Valid N.E. Store selected bit in CF flag
and clear.

OFBA /6 ib BTR r/m16, imm8 M| Valid Valid Store selected bit in CF flag
and clear.

OFBA /6 ib BTR r/m32, imm8 Ml Valid Valid Store selected bit in CF flag
and clear.

REXW + OF BA BTR r/m64, imm8 Ml Valid N.E. Store selected bit in CF flag

/6 ib and clear.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
Mi ModRM:r/m (r, w) imm8 NA NA
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “"BT—Bit Test” in this chapter for more information on this addressing
mechanism.

3-106 Vol. 2A BTR—BIt Test and Reset

INSTRUCTION SET REFERENCE, A-L

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF « Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) < O;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is
unaffected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

BTR—Bit Test and Reset Vol. 2A 3-107

INSTRUCTION SET REFERENCE, A-L

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-108 Vol.2A BTR—BIt Test and Reset

INSTRUCTION SET REFERENCE, A-L

BTS—Bit Test and Set

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode

OF AB BTS /m16, r16 MR Valid Valid Store selected bit in CF flag
and set.

OF AB BTS r/m32, r32 MR Valid Valid Store selected bit in CF flag
and set.

REXW + OF AB BTS r/m64, r64 MR Valid N.E. Store selected bit in CF flag
and set.

OFBA/5ib BTS /m16, imm8 Ml Valid Valid Store selected bit in CF flag
and set.

OFBA/5ib BTS /m32, imm8 Ml Valid Valid Store selected bit in CF flag
and set.

REXW + OF BA BTS r/m64, imm8 Ml Valid N.E. Store selected bit in CF flag

/5ib and set.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
Ml ModRM:r/m (r, w) imm8 NA NA
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-14.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “"BT—Bit Test” in this chapter for more information on this addressing
mechanism.

BTS—Bit Test and Set Vol. 2A 3-109

INSTRUCTION SET REFERENCE, A-L

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF « Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) «— 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaf-
fected. The OF, SF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

3-110 Vol.2A BTS—Bit Test and Set

#SS

#PF(fault-code)
#AC(0)

#UD

INSTRUCTION SET REFERENCE, A-L

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#S5(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

BTS—Bit Test and Set

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2A 3-111

INSTRUCTION SET REFERENCE, A-L

CALL—Call Procedure

Opcode

€8 cw

€8 cd

FF/2

FF /2

FF /2

9A cd

9A cp

FF/3

FF/3

Instruction

CALL rel16

CALL rel32

CALL r/m16

CALL /m32

CALL r/m64

CALL ptr16:16

CALL ptr16:32

CALL m16:16

CALL m16:32

Op/ 64-bit
En Mode
M N.S.

M Valid
M N.E.

M N.E.

M Valid
D Invalid
D Invalid
M Valid
M Valid

Compat/
Leg Mode

Valid

Valid

Valid
Valid
N.E.

Valid
Valid

Valid

Valid

Description

Call near, relative,
displacement relative to
next instruction.

Call near, relative,
displacement relative to
next instruction. 32-bit
displacement sign extended
to 64-bits in 64-bit mode.

Call near, absolute indirect,
address given in r/m16.

Call near, absolute indirect,
address given in r/m32.

Call near, absolute indirect,
address given in r/m64.

Call far, absolute, address
given in operand.

Call far, absolute, address
given in operand.

Call far, absolute indirect
address given in m16:16.

In 32-bit mode: if selector
points to a gate, then RIP =
32-bit zero extended
displacement taken from
gate; else RIP = zero
extended 16-bit offset from
far pointer referenced in
the instruction.

In 64-bit mode: If selector
points to a gate, then RIP =
64-bit displacement taken
from gate; else RIP = zero
extended 32-bit offset from
far pointer referenced in
the instruction.

3-112 Vol. 2A

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
REXW +FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector

points to a gate, then RIP =
64-bit displacement taken
from gate; else RIP = 64-bit
offset from far pointer
referenced in the

instruction.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
D Offset NA NA NA
M ModRM:r/m (r) NA NA NA

Description

Saves procedure linking information on the stack and branches to the called proce-
dure specified using the target operand. The target operand specifies the address of
the first instruction in the called procedure. The operand can be an immediate value,
a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:

®* Near Call — A call to a procedure in the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intra-
segment call.

® Far Call — A call to a procedure located in a different segment than the current
code segment, sometimes referred to as an inter-segment call.

* Inter-privilege-level far call — A far call to a procedure in a segment at a
different privilege level than that of the currently executing program or
procedure.

®* Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be
executed in protected mode. See “Calling Procedures Using Call and RET” in Chapter
6 of the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for additional information on near, far, and inter-privilege-level calls. See Chapter 7,
“Task Management,” in the Inte/l® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for information on performing task switches with the
CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP
register (which contains the offset of the instruction following the CALL instruction)
on the stack (for use later as a return-instruction pointer). The processor then

CALL—Call Procedure Vol.2A 3-113

INSTRUCTION SET REFERENCE, A-L

branches to the address in the current code segment specified by the target operand.
The target operand specifies either an absolute offset in the code segment (an offset
from the base of the code segment) or a relative offset (a signed displacement rela-
tive to the current value of the instruction pointer in the EIP register; this value
points to the instruction following the CALL instruction). The CS register is not
changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose
register or a memory location (r/m16, r/m32, or r/m64). The operand-size attribute
determines the size of the target operand (16, 32 or 64 bits). When in 64-bit mode,
the operand size for near call (and all near branches) is forced to 64-bits. Absolute
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is
16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits. When accessing an absolute offset indirectly using
the stack pointer [ESP] as the base register, the base value used is the value of the
ESP before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But
at the machine code level, it is encoded as a signed, 16- or 32-bit immediate value.
This value is added to the value in the EIP(RIP) register. In 64-bit mode the relative
offset is always a 32-bit immediate value which is sign extended to 64-bits before it
is added to the value in the RIP register for the target calculation. As with absolute
offsets, the operand-size attribute determines the size of the target operand (16, 32,
or 64 bits). In 64-bit mode the target operand will always be 64-bits because the
operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS
and EIP registers on the stack for use as a return-instruction pointer. The processor
then performs a “far branch” to the code segment and offset specified with the target
operand for the called procedure. The target operand specifies an absolute far
address either directly with a pointer (ptri16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
offset of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The far
address is loaded directly into the CS and EIP registers. If the operand-size attribute
is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the
CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level
® Far call to a different privilege level (inter-privilege level call)
® Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor

3-114 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

type (code segment, call gate, task gate, or TSS) and access rights determine the
type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand- size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register; the offset from the
instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to
a code segment at the same privilege level. Using this mechanism provides an extra
level of indirection and is the preferred method of making calls between 16-bit and
32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a call gate. The segment selector specified by
the target operand identifies the call gate. The target operand can specify the call
gate segment selector either directly with a pointer (ptr16:16 or ptri6:32) or indi-
rectly with a memory location (m16:16 or m16:32). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset)
from the call gate descriptor. (The offset from the target operand is ignored when a
call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is
specified in the TSS for the currently running task. The branch to the new code
segment occurs after the stack switch. (Note that when using a call gate to perform
a far call to a segment at the same privilege level, no stack switch occurs.) On the
new stack, the processor pushes the segment selector and stack pointer for the
calling procedure’s stack, an optional set of parameters from the calling procedures
stack, and the segment selector and instruction pointer for the calling procedure’s
code segment. (A value in the call gate descriptor determines how many parameters
to copy to the new stack.) Finally, the processor branches to the address of the
procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call
through a call gate. The target operand specifies the segment selector of the task
gate for the new task activated by the switch (the offset in the target operand is
ignored). The task gate in turn points to the TSS for the new task, which contains the
segment selectors for the task’s code and stack segments. Note that the TSS also
contains the EIP value for the next instruction that was to be executed before the
calling task was suspended. This instruction pointer value is loaded into the EIP
register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which
eliminates the indirection of the task gate. See Chapter 7, “Task Management,” in the

CALL—Call Procedure Vol.2A 3-115

INSTRUCTION SET REFERENCE, A-L

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS’s previous task link field is loaded with
the old task’s TSS selector. Code is expected to suspend this nested task by executing
an IRET instruction which, because the NT flag is set, automatically uses the previous
task link to return to the calling task. (See “Task Linking” in Chapter 7 of the Inte/l®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information
on nested tasks.) Switching tasks with the CALL instruction differs in this regard from
JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET
instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit
code segment, the call should be made from the first 64 KBytes of the 32-bit code
segment. This is because the operand-size attribute of the instruction is set to 16, so
only a 16-bit return address offset can be saved. Also, the call should be made using
a 16-bit call gate so that 16-bit values can be pushed on the stack. See Chapter 21,
“Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility
mode, the CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level, remaining in compatibility mode
® Far call to the same privilege level, transitioning to 64-bit mode

® Far call to a different privilege level (inter-privilege level call), transitioning to 64-
bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility
mode since task switches are not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in compatibility mode is very
similar to one carried out in protected mode. The target operand specifies an abso-
lute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with
a memory location (m16:16 or m16:32). The operand-size attribute determines the
size of the offset (16 or 32 bits) in the far address. The new code segment selector
and its descriptor are loaded into CS register and the offset from the instruction is
loaded into the EIP register. The difference is that 64-bit mode may be entered. This
specified by the L bit in the new code segment descriptor.

3-116 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

Note that a 64-bit call gate (described in the next paragraph) can also be used to
perform a far call to a code segment at the same privilege level. However, using this
mechanism requires that the target code segment descriptor have the L bit set,
causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can specify the
call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset)
from the 16-byte call gate descriptor. (The offset from the target operand is ignored
when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch. (Note that when
using a call gate to perform a far call to a segment at the same privilege level, an
implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is
unchanged, but stack segment accesses use a segment base of 0x0, the limit is
ignored, and the default stack size is 64-bits. The full value of RSP is used for the
offset, of which the upper 32-bits are undefined.) On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack and
the segment selector and instruction pointer for the calling procedure’s code
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor
branches to the address of the procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the
CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level, transitioning to compatibility mode
®* Far call to the same privilege level, remaining in 64-bit mode

® Far call to a different privilege level (inter-privilege level call), remaining in 64-bit
mode

Note that in this mode the CALL instruction can not be used to cause a task switch in
64-bit mode since task switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in 64-bit mode is very similar to
one carried out in compatibility mode. The target operand specifies an absolute far
address indirectly with a memory location (m16:16, m16:32 or m16:64). The form
of CALL with a direct specification of absolute far address is not defined in 64-bit

CALL—Call Procedure Vol.2A 3-117

INSTRUCTION SET REFERENCE, A-L

mode. The operand-size attribute determines the size of the offset (16, 32, or 64
bits) in the far address. The new code segment selector and its descriptor are loaded
into the CS register; the offset from the instruction is loaded into the EIP register. The
new code segment may specify entry either into compatibility or 64-bit mode, based
on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far
call to a code segment at the same privilege level. However, using this mechanism
requires that the target code segment descriptor have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can only
specify the call gate segment selector indirectly with a memory location (m16:16,
m16:32 or m16:64). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the 16-byte call gate
descriptor. (The offset from the target operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same priv-
ilege level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS
selector is unchanged, but stack segment accesses use a segment base of 0x0, the
limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for
the offset.) On the new stack, the processor pushes the segment selector and stack
pointer for the calling procedure’s stack and the segment selector and instruction
pointer for the calling procedure’s code segment. (Parameter copy is not supported in
IA-32e mode.) Finally, the processor branches to the address of the procedure being
called within the new code segment.

Operation
IF near call
THEN IF near relative call
THEN
IF OperandSize = 64
THEN
tempDEST « SignExtend(DEST); (* DEST is rel32 *)
tempRIP « RIP + tempDEST;
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;
Push(RIP);
RIP « tempRIP;
Fl;

IF OperandSize = 32

3-118 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

THEN
tempEIP « EIP + DEST; (* DEST is rel32*)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
EIP « tempEIP;
Fl;
IF OperandSize = 16
THEN
tempEIP « (EIP + DEST) AND O0O0QFFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
EIP « tempEIP;
Fl;
ELSE (* Near absolute call *)
IF OperandSize = 64
THEN
tempRIP « DEST; (* DEST is /m64 *)
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;
Push(RIP);
RIP < tempRIP;
Fl;
IF OperandSize = 32
THEN
tempEIP « DEST,; (* DEST is /m32 *)
IF temp€EIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
EIP « tempEIP;
Fl;
IF OperandSize = 16
THEN
tempEIP « DEST AND OOOOFFFFH; (* DEST is /m16 *)
IF temp€EIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
EIP « tempEIP;

CALL—Call Procedure Vol.2A 3-119

INSTRUCTION SET REFERENCE, A-L

Fl;
Fl;rel/abs
Fl; near

IF far call and (PE = O or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;
IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS « DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP « DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(CS);
Push(IP);
CS « DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP « DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)
FI;
Fl;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN
IF segment selector in target operand NULL
THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); Fl;
Read type and access rights of selected segment descriptor;
IFIA32_EFERLMA =0
THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS
THEN #GP(segment selector); Fl;
ELSE
IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,
THEN #GP(segment selector); Fl;
Fl;
Depending on type and access rights:

3-120 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
Fl;

CONFORMING-CODE-SEGMENT:
IFLbit=1andD bit=1andIA32_EFERLMA =1
THEN GP(new code segment selector); FI;
IF DPL > CPL
THEN #GP(new code segment selector); Fl;
IF segment not present
THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address
THEN #SS(0); FI;
tempEIP « DEST(Offset);
IF OperandSize = 16
THEN
tempEIP « tempEIP AND O000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS « DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) « CPL;
EIP « tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS « DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) « CPL;
EIP « tempEIP;
ELSE (* OperandSize = 64 *)

CALL—Call Procedure Vol. 2A 3-121

INSTRUCTION SET REFERENCE, A-L

Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS « DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) « CPL;
RIP « temp€ElP;
Fl;
Fl;
END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA
THEN GP(new code segment selector); Fl;
IF (RPL > CPL) or (DPL # CPL)
THEN #GP(new code segment selector); Fl;
IF segment not present
THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address
THEN #SS(0); FI;
tempEIP « DEST(Offset);
IF OperandSize = 16
THEN tempEIP « tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS « DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) « CPL;
EIP < tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS « DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) « CPL;
EIP « tempEIP;

1
—

3-122 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS « DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)

CS(RPL) « CPL;
RIP « tempéElP;
Fl;
Fl;
END;
CALL-GATE:

IF call gate (DPL < CPL) or (RPL > DPL)
THEN #GP(call-gate selector); Fl;
IF call gate not present
THEN #NP(call-gate selector); FI;
IF call-gate code-segment selector is NULL
THEN #GP(0); FI;
IF call-gate code-segment selector index is outside descriptor table limits
THEN #GP(call-gate code-segment selector); FI;
Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL
THEN #GP(call-gate code-segment selector); FI;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)
THEN #GP(call-gate code-segment selector); FI;
IF call-gate code segment not present
THEN #NP(call-gate code-segment selector); Fl;
IF call-gate code segment is non-conforming and DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
Fl;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit

THEN
TSSstackAddress « (new code-segment DPL * 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(current TSS selector); FI;

NewsSS « 2 bytes loaded from (TSS base + TSSstackAddress + 4);
New€SP « 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE

CALL—Call Procedure Vol.2A 3-123

INSTRUCTION SET REFERENCE, A-L

IF current TSS is 16-bit
THEN
TSSstackAddress « (new code-segment DPL * 4) + 2
IF (TSSstackAddress + 3) > current TSS limit
THEN #TS(current TSS selector); FI;
NewsSS « 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP « 2 bytes loaded from (TSS base + TSSstackAddress);
ELSE (* current TSS is 64-bit *)
TSSstackAddress « (new code-segment DPL * 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit
THEN #TS(current TSS selector); FI;
NewsSS « new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP « 8 bytes loaded from (current TSS base + TSSstackAddress);
Fl;
FI;
IF IA32_EFER.LMA = 0 and NewsSS is NULL
THEN #TS(NewSS); FI;
Read new code-segment descriptor and new stack-segment descriptor;
IF IA32_EFER.LMA = 0 and (NewsSS RPL # new code-segment DPL
or new stack-segment DPL # new code-segment DPL or new stack segment is not a
writable data segment)
THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present
THEN #SS(NewsSS); Fl;
IF CallGateSize = 32
THEN
IF new stack does not have room for parameters plus 16 bytes
THEN #SS(NewsSS); Fl;
IF CallGate(InstructionPointer) not within new code-segment limit
THEN #GP(0); FI;
SS « newsSS; (* Segment descriptor information also loaded *)
ESP « newESP;
CS:EIP « CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp « parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
IF CallGateSize = 16
THEN
IF new stack does not have room for parameters plus 8 bytes
THEN #SS(NewsSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

3-124 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

THEN #GP(0); FI;
SS « newsSS; (* Segment descriptor information also loaded *)
ESP « newESP;
CS:IP « CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp « parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address
THEN #SS(NewsSS); Fl;
IF (CallGate(InstructionPointer) is non-canonical)
THEN #GP(0); FI;
SS « NewsSS; (* NewsSS is NULL)
RSP < NewESP;
CS:IP « CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
Fl;
Fl;
CPL « CodeSegment(DPL)
CS(RPL) « CPL
END;

SAME-PRIVILEGE:
IF CallGateSize = 32
THEN
IF stack does not have room for 8 bytes
THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
CS:EIP « CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
If CallGateSize = 16
THEN
IF stack does not have room for 4 bytes
THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
CS:IP « CallGate(CS:instruction pointer);

CALL—Call Procedure Vol. 2A 3-125

INSTRUCTION SET REFERENCE, A-L

(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses
THEN #SS(0); FI;
IF RIP non-canonical
THEN #GP(0); FI;
CS:IP « CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)
Fl;
Fl;
CS(RPL) « CPL
END;

TASK-GATE:
IF task gate DPL < CPL or RPL
THEN #GP(task gate selector); Fl;
IF task gate not present
THEN #NP(task gate selector); Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); FI;
IF TSS not present
THEN #NP(TSS selector); Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:

IF TSS DPL < CPL or RPL

or TSS descriptor indicates TSS not available
THEN #GP(TSS selector); FI;

IF TSS is not present
THEN #NP(TSS selector); Fl;

SWITCH-TASKS (with nesting) to TSS;

IF EIP not within code segment limit
THEN #GP(0); FI;

3-126 Vol. 2A CALL—Call Procedure

END;

Flags Affected

INSTRUCTION SET REFERENCE, A-L

All flags are affected if a task switch occurs; no flags are affected if a task switch does

not occur.

Protected Mode Exceptions

#GP(0)

#GP(selector)

CALL—Call Procedure

If the target offset in destination operand is beyond the new
code segment limit.

If the segment selector in the destination operand is NULL.

If the code segment selector in the gate is NULL.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a code segment or gate or TSS selector index is outside
descriptor table limits.

If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.

If the DPL for a nonconforming-code segment is not equal to the
CPL or the RPL for the segment’s segment selector is greater
than the CPL.

If the DPL for a conforming-code segment is greater than the
CPL.

If the DPL from a call-gate, task-gate, or TSS segment
descriptor is less than the CPL or than the RPL of the call-gate,
task-gate, or TSS’s segment selector.

If the segment descriptor for a segment selector from a call gate
does not indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor
table limits.

If the DPL for a code-segment obtained from a call gate is
greater than the CPL.

If the segment selector for a TSS has its local/global bit set for
local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

Vol.2A 3-127

INSTRUCTION SET REFERENCE, A-L

#55(0)

#SS(selector)

#NP(selector)

#TS(selector)

#PF(fault-code)
#AC(0)

#UD

If pushing the return address, parameters, or stack segment
pointer onto the stack exceeds the bounds of the stack segment,
when no stack switch occurs.

If a memory operand effective address is outside the SS
segment limit.

If pushing the return address, parameters, or stack segment
pointer onto the stack exceeds the bounds of the stack segment,
when a stack switch occurs.

If the SS register is being loaded as part of a stack switch and
the segment pointed to is marked not present.

If stack segment does not have room for the return address,
parameters, or stack segment pointer, when stack switch
occurs.

If a code segment, data segment, stack segment, call gate, task
gate, or TSS is not present.

If the new stack segment selector and ESP are beyond the end
of the TSS.

If the new stack segment selector is NULL.

If the RPL of the new stack segment selector in the TSS is not
equal to the DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack
segment is not equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside
descriptor table limits.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)

3-128 Vol.2A

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
If a page fault occurs.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

#GP(selector) If a memory address accessed by the selector is in non-canon-
ical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical.
If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.
#GP(selector) If code segment or 64-bit call gate is outside descriptor table
limits.
If code segment or 64-bit call gate overlaps non-canonical
space.

If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, or 64-bit call gate.

If the segment descriptor pointed to by the segment selector in
the destination operand is a code segment and has both the D-
bit and the L- bit set.

If the DPL for a nonconforming-code segment is not equal to the
CPL, or the RPL for the segment’s segment selector is greater
than the CPL.

If the DPL for a conforming-code segment is greater than the
CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the
RPL of the 64-bit call-gate.

If the upper type field of a 64-bit call gate is not 0x0.

If the segment selector from a 64-bit call gate is beyond the
descriptor table limits.

If the DPL for a code-segment obtained from a 64-bit call gate is
greater than the CPL.

If the code segment descriptor pointed to by the selector in the
64-bit gate doesn't have the L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit
call gate does not indicate it is a code segment.

CALL—Call Procedure Vol. 2A 3-129

INSTRUCTION SET REFERENCE, A-L

#55(0)

#SS(selector)

#NP(selector)
#TS(selector)
#UD

#PF(fault-code)
#AC(0)

3-130 Vol.2A

If pushing the return offset or CS selector onto the stack
exceeds the bounds of the stack segment when no stack switch
occurs.

If a memory operand effective address is outside the SS
segment limit.

If the stack address is in a non-canonical form.

If pushing the old values of SS selector, stack pointer, EFLAGS,
CS selector, offset, or error code onto the stack violates the
canonical boundary when a stack switch occurs.

If a code segment or 64-bit call gate is not present.
If the load of the new RSP exceeds the limit of the TSS.

(64-bit mode only) If a far call is direct to an absolute address in
memory.

If the LOCK prefix is used.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-L

CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to
Doubleword/Convert Doubleword to Quadword

Opcode Instruction Op/ 64-bit Compat/ Description

En Mode Leg Mode
98 CBwW NP Valid Valid AX « sign-extend of AL.
98 CwDE NP Valid Valid EAX « sign-extend of AX.
REX.W + 98 CDQE NP Valid N.E. RAX « sign-extend of EAX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Double the size of the source operand by means of sign extension. The CBW (convert
byte to word) instruction copies the sign (bit 7) in the source operand into every bit
in the AH register. The CWDE (convert word to doubleword) instruction copies the
sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register.

CBW and CWDE reference the same opcode. The CBW instruction is intended for use
when the operand-size attribute is 16; CWDE is intended for use when the operand-
size attribute is 32. Some assemblers may force the operand size. Others may treat
these two mnemonics as synonyms (CBW/CWDE) and use the setting of the
operand-size attribute to determine the size of values to be converted.

In 64-bit mode, the default operation size is the size of the destination register. Use
of the REX.W prefix promotes this instruction (CDQE when promoted) to operate on
64-bit operands. In which case, CDQE copies the sign (bit 31) of the doubleword in
the EAX register into the high 32 bits of RAX.

Operation

IF OperandSize = 16 (* Instruction = CBW *)
THEN
AX « SignExtend(AL);
ELSE IF (OperandSize = 32, Instruction = CWDE)
EAX « SignExtend(AX); FI;
ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)
RAX « SignExtend(EAX);
Fl;

Flags Affected
None.

CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Double- Vol.2A 3-131
word to Quadword

INSTRUCTION SET REFERENCE, A-L

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

3-132 Vol. 2A CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Double-
word to Quadword

INSTRUCTION SET REFERENCE, A-L

CLC—Clear Carry Flag

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
F8 CLC NP Valid Valid Clear CF flag.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Clears the CF flag in the EFLAGS register. Operation is the same in all non-64-bit
modes and 64-bit mode.

Operation

CF <0

Flags Affected
The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

CLC—Clear Carry Flag Vol.2A 3-133

INSTRUCTION SET REFERENCE, A-L

CLD—Clear Direction Flag

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
FC CLD NP Valid Valid Clear DF flag.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string opera-
tions increment the index registers (ESI and/or EDI). Operation is the same in all
non-64-bit modes and 64-bit mode.

Operation

DF < 0O;

Flags Affected
The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

3-134 Vol. 2A CLD—Clear Direction Flag

INSTRUCTION SET REFERENCE, A-L

CLFLUSH—FIlush Cache Line

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
OF AE /7 CLFLUSH m8 M Valid Valid Flushes cache line
containing m8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) NA NA NA
Description

Invalidates the cache line that contains the linear address specified with the source
operand from all levels of the processor cache hierarchy (data and instruction). The
invalidation is broadcast throughout the cache coherence domain. If, at any level of
the cache hierarchy, the line is inconsistent with memory (dirty) it is written to
memory before invalidation. The source operand is a byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag
CLFSH (bit 19 of the EDX register, see "CPUID—CPU Identification” in this chapter).
The aligned cache line size affected is also indicated with the CPUID instruction (bits
8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the
behavior of this instruction. It should be noted that processors are free to specula-
tively fetch and cache data from system memory regions assigned a memory-type
allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHA instructions can be used to provide the processor with hints for this spec-
ulative behavior. Because this speculative fetching can occur at any time and is not
tied to instruction execution, the CLFLUSH instruction is not ordered with respect to
PREFETCHA instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execu-
tion of a CLFLUSH instruction that references the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be
ordered by any other fencing or serializing instructions or by another CLFLUSH
instruction. For example, software can use an MFENCE instruction to ensure that
previous stores are included in the write-back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all
permission checking and faults associated with a byte load (and in addition, a
CLFLUSH instruction is allowed to flush a linear address in an execute-only segment).
Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page
tables.

The CLFLUSH instruction was introduced with the SSE2 extensions; however,
because it has its own CPUID feature flag, it can be implemented in IA-32 processors

CLFLUSH—FIlush Cache Line Vol.2A 3-135

INSTRUCTION SET REFERENCE, A-L

that do not include the SSE2 extensions. Also, detecting the presence of the SSE2
extensions with the CPUID instruction does not guarantee that the CLFLUSH instruc-
tion is implemented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents
CLFLUSH: void _mm_clflush(void const *p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#UD If CPUID.O01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

3-136 Vol.2A CLFLUSH—Flush Cache Line

INSTRUCTION SET REFERENCE, A-L

CLI — Clear Interrupt Flag

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
FA Cul NP Valid Valid Clear interrupt flag;

interrupts disabled when
interrupt flag cleared.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the
EFLAGS register. No other flags are affected. Clearing the IF flag causes the
processor to ignore maskable external interrupts. The IF flag and the CLI and STI
instruction have no affect on the generation of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected. Table 3-6 indi-
cates the action of the CLI instruction depending on the processor operating mode
and the CPL/IOPL of the running program or procedure.

CLI operation is the same in non-64-bit modes and 64-bit mode.

Table 3-6. Decision Table for CLI Results

PE VM I0PL CPL PVI VIP VME CLI Result

0 X X X X X X IF=0

1 0 > CPL X X X X IF=0

1 0 <CPL 3 1 X X VIF=0

1 0 <CPL <3 X X X GP Fault

1 0 <CPL X 0 X X GP Fault

1 1 3 X X X X IF=0

1 1 <3 X X X 1 VIF=0

1 1 <3 X X X 0 GP Fault
NOTES:

* X = This setting has no impact.

Operation

IFPE=0

CLI — Clear Interrupt Flag Vol.2A 3-137

INSTRUCTION SET REFERENCE, A-L

THEN
IF « O; (* Reset Interrupt Flag *)
ELSE
IFVM=0;
THEN
IF I0PL > CPL
THEN
IF « O; (* Reset Interrupt Flag *)
ELSE
IF ((IOPL < CPL) and (CPL = 3) and (PVI = 1))
THEN
VIF « O; (* Reset Virtual Interrupt Flag *)
ELSE
#GP(0);
Fl;
Fl;
ELSE (*VM =1 %)
IFIOPL=3
THEN
IF « O; (* Reset Interrupt Flag *)
ELSE
IF (IOPL < 3) AND (VME = 1)
THEN
VIF « O; (* Reset Virtual Interrupt Flag *)
ELSE
#GP(0);
Fl;
Fl;
Fl;
Fl;
Flags Affected

If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal
to or less than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS
register are unaffected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD If the LOCK prefix is used.

3-138 Vol. 2A CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-L

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD If the LOCK prefix is used.

CLI — Clear Interrupt Flag Vol.2A 3-139

INSTRUCTION SET REFERENCE, A-L

CLTS—Clear Task-Switched Flag in CRO

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
OF 06 CLTS NP Valid Valid Clears TS flag in CRO.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Clears the task-switched (TS) flag in the CRO register. This instruction is intended for
use in operating-system procedures. It is a privileged instruction that can only be
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow
initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the descrip-
tion of the TS flag in the section titled “Control Registers” in Chapter 2 of the Inte/®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more infor-
mation about this flag.

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 25, "VMX Non-Root Operation,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C, for more information about the behavior
of this instruction in VMX non-root operation.

Operation

CRO.TS[bit 3] « O;

Flags Affected
The TS flag in CRO register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

3-140 Vol. 2A CLTS—Clear Task-Switched Flag in CRO

INSTRUCTION SET REFERENCE, A-L

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than 0.
#UD If the LOCK prefix is used.

CLTS—Clear Task-Switched Flag in CRO Vol.2A 3-141

INSTRUCTION SET REFERENCE, A-L

CMC—Complement Carry Flag

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
F5 CMC NP Valid Valid Complement CF flag.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Complements the CF flag in the EFLAGS register. CMC operation is the same in non-
64-bit modes and 64-bit mode.

Operation

EFLAGS.CF[bit 0]«— NOT EFLAGS.CF[bit OJ;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF
flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

3-142 Vol. 2A CMC—Complement Carry Flag

CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L

Opcode

OF 47 /r

OF 47 /r

REX.W + OF 47
/r

OF 43 /r

OF 43 /r

REX.W + OF 43
/r

OF 42 /r
OF 42 /r

REX.W + OF 42
/r

OF 46 /r
OF 46 /r

REX.W + OF 46
/r

OF 42 /r
OF 42 /r

REX.W + OF 42
/r

OF 44 /r
OF 44 /r

REX.W + OF 44
/r

OF 4F /r

OF 4F /r

REX.W + OF 4F
/r

Instruction

CMOVA r16, r/m16

CMOVA r32, r/m32

CMOVA r64, r/m64

CMOVAE r16, r/m16

CMOVAE r32, r/m32

CMOVAE ré4, r/m64

CMOVB r16, /m16
CMOVB r32, r/m32
CMOVB r64, r/m64

CMOVBE r16, r/m16

CMOVBE r32, /m32

CMOVBE r64, r/m64

CMOVCr16, r/m16
CMOVC r32, r/m32
CMOVC r64, r/m64

CMOVE r16, /m16
CMOVE r32, r/m32
CMOVE r64, r/m64

CMOVG r16, /m16

CMOVG r32, r/m32

CMOVG r64, r/m64

Op/

RM

RM

RM

RM

RM

RM

RM
RM
RM

RM

RM

RM

RM
RM
RM

RM
RM
RM

RM

RM

RM

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid
Valid
Valid

Valid

Valid

V/N.E.

Compat/
Leg Mode
Valid
Valid

N.E.

Valid
Valid

N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid

NA

Description

Move if above (CF=0 and
ZF=0).

Move if above (CF=0 and
ZF=0).

Move if above (CF=0 and
ZF=0).

Move if above or equal
(CF=0).

Move if above or equal
(CF=0).

Move if above or equal
(CF=0).

Move if below (CF=1).
Move if below (CF=1).
Move if below (CF=1).

Move if below or equal
(CF=1 or ZF=1).

Move if below or equal
(CF=1 or ZF=1).

Move if below or equal
(CF=1 or ZF=1).

Move if carry (CF=1).
Move if carry (CF=1).
Move if carry (CF=1).

Move if equal (ZF=1).
Move if equal (ZF=1).
Move if equal (ZF=1).

Move if greater (ZF=0 and
SF=0F).

Move if greater (ZF=0 and
SF=0F).

Move if greater (ZF=0 and
SF=0F).

CMOVcc—Conditional Move

Vol.2A 3-143

INSTRUCTION SET REFERENCE, A-L

Opcode
OF 4D /r
OF 4D /r

REX.W + OF 4D
/r

OF 4C/r
OF4C/r

REX.W + OF 4C
/r

OF 4E /1
OF 4E /r

REX.W + OF 4€
/r

OF 46 /r
OF 46 /r

REX.W + OF 46
/r

OF 42 /r
OF 42 /r

REX.W + OF 42
/r

OF 43 /r
OF 43 /r

REX.W + OF 43
/r

OF 47 /r

OF 47 /r

Instruction

CMOVGE r16, r/m16

CMOVGE r32, /m32

CMOVGE r64, r/m64

CMOVL r16, r/m16
CMOVL r32, r/m32
CMOVL ré64, r/m64

CMOVLE r16, /m16

CMOVLE r32, r/m32

CMOVLE r64, r/m64

CMOVNA r16, r/m16

CMOVNA r32, r/m32

CMOVNA r64, r/m64

CMOVNAE r16,
r/mi16

CMOVNAE r32,
r/m32

CMOVNAE r64,
r/me4

CMOVNB r16, r/m16
CMOVNB r32, r/m32
CMOVNB r64, r/m64

CMOVNBE r16,
r/ml6

CMOVNBE r32,
r/m32

Op/ 64-Bit
En Mode
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid

Compat/
Leg Mode
Valid
Valid

N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.
Valid
Valid
N.E.
Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid

Description

Move if greater or equal
(SF=0F).

Move if greater or equal
(SF=OF).

Move if greater or equal
(SF=0F).

Move if less (SF# OF).
Move if less (SF# OF).
Move if less (SF# OF).

Move if less or equal (ZF=1
or SF# OF).

Move if less or equal (ZF=1
or SF# OF).

Move if less or equal (ZF=1
or SF# OF).

Move if not above (CF=1 or
ZF=1).

Move if not above (CF=1 or
ZF=1).

Move if not above (CF=1 or
ZF=1).

Move if not above or equal
(CF=1).

Move if not above or equal
(CF=1).

Move if not above or equal
(CF=1).

Move if not below (CF=0).
Move if not below (CF=0).
Move if not below (CF=0).

Move if not below or equal
(CF=0 and ZF=0).

Move if not below or equal
(CF=0 and ZF=0).

3-144 Vol.2A

CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L

Opcode

REX.W + OF 47
/r

OF 43 /r
OF 43 /r

REX.W + OF 43
/r

OF 45 /r
OF 45 /r

REX.W + OF 45
/r

OF 4€ /r
OF 4€ /r

REX.W + OF 4€
/r

OF4C/r
OF 4C /r

REX.W + OF 4C
/r

OF 4D /r
OF 4D /r

REX.W + OF 4D
/r

OF 4F /r

OF 4F /r
REX.W + OF 4F
/r

OF 41 /r

OF 41 /r

Instruction

CMOVNBE r64,
r/m64

CMOVNC r16, /m16
CMOVNC r32, r/m32
CMOVNC r64, r/m64

CMOVNE r16, /m16
CMOVNE r32, r/m32
CMOVNE r64, r/m64

CMOVNG r16, /m16

CMOVNG r32, r/m32

CMOVNG r64, r/m64

CMOVNGE r16,
/mi16

CMOVNGE r32,
r/m32

CMOVNCGE r64,
r/mé4

CMOVNL r16, r/m16
CMOVNL r32, /m32
CMOVNL r64, r/m64

CMOVNLE r16,
r/m16

CMOVNLE r32,
r/m32

CMOVNLE ré64,
r/mé64

CMOVNO r16, i/m16

CMOVNO r32, r/m32

Op/
En
RM

RM
RM
RM

RM
RM
RM

RM
RM
RM
RM
RM
RM

RM
RM
RM

RM
RM
RM
RM

RM

64-Bit
Mode
Valid

Valid
Valid
Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.
Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid

Description

Move if not below or equal
(CF=0 and ZF=0).

Move if not carry (CF=0).
Move if not carry (CF=0).
Move if not carry (CF=0).

Move if not equal (ZF=0).
Move if not equal (ZF=0).
Move if not equal (ZF=0).

Move if not greater (ZF=1
or SF# OF).

Move if not greater (ZF=1
or SF# OF).

Move if not greater (ZF=1
or SF# OF).

Move if not greater or equal
(SF= OF).

Move if not greater or equal
(SF+ OF).

Move if not greater or equal
(SF= OF).

Move if not less (SF=0F).
Move if not less (SF=0F).
Move if not less (SF=0F).

Move if not less or equal
(2F=0 and SF=0F).

Move if not less or equal
(2F=0 and SF=0F).
Move if not less or equal
(2F=0 and SF=0F).
Move if not overflow
(OF=0).

Move if not overflow
(OF=0).

CMOVcc—Conditional Move

Vol.2A 3-145

INSTRUCTION SET REFERENCE, A-L

Opcode

REX.W + OF 41
/r

OF 4B /r
OF 4B /r

REX.W + OF 4B
/r

OF 49 /r
OF 49 /r

REX.W + OF 49
/r

OF 45 /r
OF 45 /r

REX.W + OF 45
/r

OF 40 /r
OF 40 /r

REX.W + OF 40
/r

OF 4A /r
OF4A /r

REX.W + OF 4A
/r

OF4A /r
OF 4A /r

REX.W + OF 4A
/r

OF 4B /r
OF 4B /r

REX.W + OF 4B
/r

OF 48 /r
OF 48 /r

REX.W + OF 48
/r

OF 44 /r

Instruction

CMOVNO r64, r/m64

CMOVNP r16, /m16
CMOVNP r32, r/m32
CMOVNP r64, r/m64

CMOVNS r16, r/m16
CMOVNS r32, r/m32
CMOVNS r64, r/m64

CMOVNZ r16, r/m16
CMOVNZ r32, r/m32
CMOVNZ r64, r/m64

CMOVO r16, /m16
CMOVO r32, r/m32
CMOVO r64, r/m64

CMOVP r16, r/m16
CMOVP r32, r/m32
CMOVP r64, r/m64

CMOVPE r16, r/m16
CMOVPE r32, r/m32
CMOVPE r64, r/m64

CMOVPO ri16, r/m16
CMOVPO r32, r/m32
CMOVPO r64, r/m64

CMOVS r16, r/m16
CMOVS r32, r/m32
CMOVS r64, r/m64

CMOVZ r16, r/m16

Op/ 64-Bit
En Mode
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid
RM Valid

Compat/
Leg Mode

N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Description

Move if not overflow
(OF=0).

Move if not parity (PF=0).
Move if not parity (PF=0).
Move if not parity (PF=0).

Move if not sign (SF=0).
Move if not sign (SF=0).
Move if not sign (SF=0).

Move if not zero (ZF=0).
Move if not zero (ZF=0).
Move if not zero (ZF=0).

Move if overflow (OF=1).
Move if overflow (OF=1).
Move if overflow (OF=1).

Move if parity (PF=1).
Move if parity (PF=1).
Move if parity (PF=1).

Move if parity even (PF=1).
Move if parity even (PF=1).
Move if parity even (PF=1).

Move if parity odd (PF=0).
Move if parity odd (PF=0).
Move if parity odd (PF=0).

Move if sign (SF=1).
Move if sign (SF=1).
Move if sign (SF=1).

Move if zero (ZF=1).

3-146 Vol.2A

CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L

Opcode Instruction Op/ 64-Bit Compat/ Description

En Mode Leg Mode
OF 44 /r CMOVZ r32,r/m32 RM Valid Valid Move if zero (ZF=1).
REX.W + OF 44 (CMOVZ r64,r/m64 RM Valid N.E. Move if zero (ZF=1).
r

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

The CMOVcc instructions check the state of one or more of the status flags in the
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are
in a specified state (or condition). A condition code (cc) is associated with each
instruction to indicate the condition being tested for. If the condition is not satisfied,
a move is not performed and execution continues with the instruction following the
CMOVcc instruction.

These instructions can move 16-bit, 32-bit or 64-bit values from memory to a
general-purpose register or from one general-purpose register to another. Condi-
tional moves of 8-bit register operands are not supported.

The condition for each CMOVcc mnemonic is given in the description column of the
above table. The terms “less” and “greater” are used for comparisons of signed inte-
gers and the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the CMOVA
(conditional move if above) instruction and the CMOVNBE (conditional move if not
below or equal) instruction are alternate mnemonics for the opcode OF 47H.

The CMOVcc instructions were introduced in P6 family processors; however, these
instructions may not be supported by all IA-32 processors. Software can determine if
the CMOVcc instructions are supported by checking the processor’s feature informa-
tion with the CPUID instruction (see "CPUID—CPU Identification” in this chapter).

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
temp « SRC
IF condition TRUE

CMOVcc—Conditional Move Vol. 2A 3-147

INSTRUCTION SET REFERENCE, A-L

THEN
DEST « temp;
Fl;
ELSE
IF (OperandSize = 32 and IA-32e mode active)
THEN
DEST[63:32] « O;
Fl;
Fl;
Flags Affected
None.

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

3-148 Vol.2A

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-L

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

CMOVcc—Conditional Move Vol. 2A 3-149

INSTRUCTION SET REFERENCE, A-L

CMP—Compare Two Operands

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
3Cib CMP AL, imm8 | Valid Valid Compare imm8 with AL
3D iw CMP AX, imm16 | Valid Valid Compare imm16 with AX.
3D id CMP EAX, imm32 | Valid Valid Compare imm32 with EAX.
REXW +3Did CMPRAX, imm32 | Valid N.E. Compare imm32 sign-
extended to 64-bits with
RAX.
80/7 ib CMP r/m8, imm8 Ml Valid Valid Compare imm8 with r/m8.
REX+80/7ib CMPr/m8,imm8 M Valid N.E. Compare imm8 with r/m8.
81/7 iw CMP r/m16, Ml Valid Valid Compare imm16 with
imm16 r/m16.
81/7 id CMP r/m32, M Valid Valid Compare imm32 with
imm32 r/m32.
REXW +81/7 (CMP r/m64, Ml Valid N.E. Compare imm32 sign-
id imm32 extended to 64-bits with
r/mé4.
83/7ib CMP r/m16, imm8 Ml Valid Valid Compare imm8 with r/m16.
83/7ib CMP r/m32, imm8 Ml Valid Valid Compare imm8 with r/m32.
REXW +83/7 CMP r/m64, imm8 Ml Valid N.E. Compare imm8 with r/m64.
ib
38/r CMP r/m8, r8 MR Valid Valid Compare r8 with r/m8.
REX +38/r CMP /m8’, 18’ MR Valid N.E. Compare r8 with r/m8.
39/r CMP r/m16,r16 MR Valid Valid Compare r16 with r/m16.
39/r CMP r/m32,r32 MR \Valid Valid Compare r32 with r/m32.
REXW +39/r CMP r/m64,r64 MR Valid N.E. Compare r64 with r/m64.
3A/r CMP r8, r/m8 RM Valid Valid Compare r/m8 with r8.
REX+3A/r CMP r8*, r/m8 RM Valid N.E. Compare r/m8 with r8.
3B/r CMPr16,r/m16 RM Valid Valid Compare r/m16 with r16.
3B/r CMP r32, r/m32 RM Valid Valid Compare r/m32 with r32.
REXW +3B/r CMPr64,r/m64 RM Valid N.E. Compare r/m64 with ré64.
NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

3-150 Vol.2A

CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-L

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
MR ModRM:r/m (r, w) ModRM:reg (w) NA NA
M ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
Description

Compares the first source operand with the second source operand and sets the
status flags in the EFLAGS register according to the results. The comparison is
performed by subtracting the second operand from the first operand and then setting
the status flags in the same manner as the SUB instruction. When an immediate
value is used as an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on
the results of a CMP instruction. Appendix B, "EFLAGS Condition Codes,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows
the relationship of the status flags and the condition codes.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

temp < SRC1 — SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CMP—Compare Two Operands Vol.2A 3-151

INSTRUCTION SET REFERENCE, A-L

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-152 Vol. 2A CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-L

CMPPD—Compare Packed Double-Precision Floating-Point Values

Opcode/ Op/ 64/32- CPUID Description
Instruction En bit Mode Feature
Flag
66 OF C2/rib RMI V/V SSE2 Compare packed double-
CMPPD xmm1, xmm2/m128, imm8 precision floating-point

values in xmm2/m128 and
xmm1 using imm8 as
comparison predicate.

VEX.NDS.128.66.0F.WIG C2 /rib RVMI V/V AVX Compare packed double-
VCMPPD xmm1, xmm2, xmm3/m128, precision floating-point
imm8 values in xmm3/m128 and

xmmZ2 using bits 4:0 of
imm8 as a comparison

predicate.
VEX.NDS.256.66.0F.WIG C2 /rib RVMI V/V AVX Compare packed double-
VCMPPD ymm1, ymm2, ymm3/m256, precision floating-point
imm8 values in ymm3/m256 and

ymm?2 using bits 4:0 of
imm8 as a comparison

predicate.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
RVMI ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8

Description

Performs a SIMD compare of the packed double-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and
returns the results of the comparison to the destination operand. The comparison
predicate operand (third operand) specifies the type of comparison performed on
each of the pairs of packed values. The result of each comparison is a quadword
mask of all 1s (comparison true) or all 0s (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 128-bit memory location. The comparison predicate operand is an 8-bit
immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the
corresponding YMM destination register remain unchanged. Two comparisons are
performed with results written to bits 127:0 of the destination operand.

CMPPD—Compare Packed Double-Precision Floating-Point Values Vol.2A 3-153

INSTRUCTION SET REFERENCE, A-L

Table 3-7. Comparison Predicate for CMPPD and CMPPS Instructions

Predi- |imm8 | Description Relation where: | Emulation | Result if | QNaN
cate Encod- Als 1st Operand NaN Oper-and
ing Bls 2nd Operand | Signals
Operand Invalid
€Q 000B | Equal A=B False No
LT 001B | Less-than A<B False Yes
LE 010B | Less-than-or-equal | A<B False Yes
Greater than A>B Swap False Yes
Operands,
Use LT
Greater-than-or- A>B Swap False Yes
equal Operands,
Use LE
UNORD | 011B | Unordered A, B = Unordered True No
NEQ 100B | Not-equal A#B True No
NLT 101B | Not-less-than NOT(A <B) True Yes
NLE 110B | Not-less-than-or- | NOT(A <B) True Yes
equal
Not-greater-than | NOT(A > B) Swap True Yes
Operands,
Use NLT
Not-greater-than- | NOT(A = B) Swap True Yes
or-equal Operands,
Use NLE
ORD 111B | Ordered A, B = Ordered False No

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate an exception, because a mask of all Os
corresponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a
QNaN.

Note that the processors with "CPUID.1H:ECX.AVX =0" do not implement the
greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-
equal relations. These comparisons can be made either by using the inverse relation-
ship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must

3-154 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

swap the operands (copying registers when necessary to protect the data that will
now be in the destination), and then perform the compare using a different predi-
cate. The predicate to be used for these emulations is listed in Table 3-7 under the
heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPD instruction, for processors with
“CPUID.1H:ECX.AVX =0". See Table 3-8. Compiler should treat reserved Imm8
values as illegal syntax.

Table 3-8. Pseudo-Op and CMPPD Implementation

Pseudo-Op CMPPD Implementation
CMPEQPD xmm1, xmmZ2 CMPPD xmm1, xmm2, 0
CMPLTPD xmm1, xmmZ2 CMPPD xmm1, xmmZ2, 1
CMPLEPD xmm1, xmmZ2 CMPPD xmm1, xmmZ, 2
CMPUNORDPD xmm1, xmmZ2 CMPPD xmm1, xmmZ, 3
CMPNEQPD xmm1, xmmZ2 CMPPD xmm1, xmmZ2, 4
CMPNLTPD xmm1, xmmZ2 CMPPD xmm1, xmmZ, 5
CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmmZ, 6
CMPORDPD xmm1, xmmZ2 CMPPD xmm1, xmmZ2, 7

The greater-than relations that the processor does not implement, require more than
one instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is

moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPPD

VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a
128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are
zeroed. Two comparisons are performed with results written to bits 127:0 of the
destination operand.

VEX.256 encoded version: The first source operand (second operand) is a YMM
register. The second source operand (third operand) can be a YMM register or a 256-
bit memory location. The destination operand (first operand) is a YMM register. Four
comparisons are performed with results written to the destination operand.

The comparison predicate operand is an 8-bit immediate:

® Forinstructions encoded using the VEX prefix, bits 4:0 define the type of
comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate
are reserved.

CMPPD—Compare Packed Double-Precision Floating-Point Values Vol.2A 3-155

INSTRUCTION SET REFERENCE, A-L

Table 3-9. Comparison Predicate for VCMPPD and VCMPPS Instructions

Predicate | imm8 | Description Result: A Is 1st Operand, B Is 2nd Operand | Signals
Value _ 1| #lAon
A>B A<B |A=B Unordered QNAN
EQ 0OQ OH | Equal (ordered, non- | False False True False No
(EQ) signaling)
LT OS TH | Less-than (ordered, | False True False False Yes
(LT) signaling)
LE OS 2H | Less-than-or-equal False True True False Yes
(LE) (ordered, signaling)
UNORD _ 3H | Unordered (non- False False False True No
Q signaling)
(UNORD)
NEQ UQ 4H | Not-equal True True False True No
(NEQ) (unordered, non-
signaling)
NLT_US 5H | Not-less-than True False True True Yes
(NLT) (unordered,
signaling)
NLE_US 6H | Not-less-than-or- True False False True Yes
(NLE) equal (unordered,
signaling)
ORD Q 7H | Ordered (non- True True True False No
(ORD) signaling)
EQ UQ 8H | Equal (unordered, False False True True No
non-signaling)
NGE_US 9H | Not-greater-than-or- | False True False True Yes
(NGE) equal (unordered,
signaling)
NGT _US | AH Not-greater-than False True True True Yes
(NGT) (unordered, signal-
ing)
FALSE O | BH False (ordered, non- | False False False False No
Q(FALSE) signaling)
NEQ OQ |CH Not-equal (ordered, | True True False False No
non-signaling)
GE_OS DH Greater-than-or- True False True False Yes
(GE) equal (ordered, sig-
naling)

3-156 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Table 3-9. Comparison Predicate for VCMPPD and VCMPPS Instructions (Contd.)

Predicate | imm8 | Description Result: A Is 1st Operand, B Is 2nd Operand | Signals
Value _ 11 #lAon
A>B A<B |A=B Unordered QNAN

GT _OS EH Greater-than True False False False Yes

(GT) (ordered, signaling)

TRUE U | FH True (unordered, True True True True No

Q(TRUE) non-signaling)

EQ OS 10H Equal (ordered, sig- | False False True False Yes
naling)

LT _0Q 11H Less-than (ordered, | False True False False No
nonsignaling)

LE 0OQ 12H Less-than-or-equal False True True False No
(ordered, nonsignal-
ing)

UNORD_ | 13H Unordered (signal- False False False True Yes

S ing)

NEQ US | 14H Not-equal (unor- True True False True Yes
dered, signaling)

NLT UQ | 15H Not-less-than (unor- | True False True True No
dered, nonsignaling)

NLE UQ | 16H Not-less-than-or- True False False True No
equal (unordered,
nonsignaling)

ORD_S 17H Ordered (signaling) | True True True False Yes

EQ US 18H Equal (unordered, False False True True Yes
signaling)

NGE _UQ | 19H Not-greater-than-or- | False True False True No
equal (unordered,
nonsignaling)

NGT_UQ |1AH | Not-greater-than False True True True No
(unordered, nonsig-
naling)

FALSE O | 1BH | False (ordered, sig- | False False False False Yes

S naling)

NEQ OS | 1CH | Not-equal (ordered, | True True False False Yes
signaling)

CMPPD—Compare Packed Double-Precision Floating-Point Values Vol.2A 3-157

INSTRUCTION SET REFERENCE, A-L

Table 3-9. Comparison Predicate for VCMPPD and VCMPPS Instructions (Contd.)

Predicate | imm8 | Description Result: A Is 1st Operand, B Is 2nd Operand | Signals
Value _ 1| #lAon
A>B A<B |A=B Unordered QNAN

GE 0Q IDH | Greater-than-or- True False True False No
equal (ordered, non-
signaling)

GT_0Q 1EH | Greater-than True False False False No
(ordered, nonsignal-
ing)

TRUE_US | 1IFH | True (unordered, sig- | True True True True Yes
naling)

NOTES:
1. If either operand A or B is a NAN.

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPPD instruction. See Table 3-10, where the notations of regl
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.

Table 3-10. Pseudo-Op and VCMPPD Implementation
CMPPD Implementation

Pseudo-Op

VCMPEQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 0

VCMPLTPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 1

VCMPLEPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 2

VCMPUNORDPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 3

VCMPNEQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 4

VCMPNLTPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 5

VCMPNLEPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 6

VCMPORDPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 7

VCMPEQ UQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 8

VCMPNGEPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 9

VCMPNGTPD regl, reg2, reg3
VCMPFALSEPD regl, reg2, reg3
VCMPNEQ OQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 0AH
VCMPPD regl, reg2, reg3, 0BH
VCMPPD regl, reg2, reg3, 0CH

3-158 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Table 3-10. Pseudo-Op and VCMPPD Implementation

Pseudo-Op

CMPPD Implementation

VCMPGEPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 0DH

VCMPGTPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, OEH

VCMPTRUEPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, OFH

VCMPEQ_OSPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 10H

VCMPLT OQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 11H

VCMPLE OQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 12H

VCMPUNORD_SPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 13H

VCMPNEQ USPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 14H

VCMPNLT _UQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 15H

VCMPNLE _UQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 16H

VCMPORD _SPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 17H

VCMPEQ USPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 18H

VCMPNGE_UQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 19H

VCMPNGT _UQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, IAH

VCMPFALSE OSPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, IBH

VCMPNEQ_OSPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, ICH

VCMPGE_OQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, IDH

VCMPGT OQPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, IEH

VCMPTRUE USPD regl, reg2, reg3

VCMPPD regl, reg2, reg3, 1IFH

Operation

CASE (COMPARISON PREDICATE) OF

0: OP3 € EQ_0Q; OP5 ¢ EQ _0Q;

:OP3 € LT OS; OP5 € LT OS;
:OP3 € LE _OS; OP5 € LE OS;

: OP3 € UNORD_Q; OP5 € UNORD Q;
: OP3 € NEQ UQ; OP5 €« NEQ UQ;

: OP3 € NLT_US; OP5 < NLT_US;

: OP3 € NLE_US; OP5 < NLE_US;
:OP3 € ORD_Q; OP5 € ORD _Q;

: OP5 € EQ UQ;

: OP5 € NGE _US;

O 0 1 N Lt A W N —

CMPPD—Compare Packed Double-Precision Floating-Point Values Vol.2A 3-159

INSTRUCTION SET REFERENCE, A-L

10: OP5 € NGT_US;
11: OP5 € FALSE_0OQ;
12: OP5 € NEQ_0OQ;
13: OP5 € GE_OS;

14: OP5 € GT_OS;

15: OP5 € TRUE_UQ;
16: OP5 € EQ_OS;

17: OP5 € LT _OQ;
18: OP5 € LE_0OQ;
19: OP5 € UNORD _S;
20: OP5 € NEQ _US;
21: OP5 ¢ NLT_UQ;
22: OP5 ¢ NLE_UQ;
23: OP5 € ORD _S;
24: OP5 € EQ _US;
25: OP5 € NGE_UQ;
26: OP5 € NGT _UQ;
27: OP5 €& FALSE _OS;
28: OP5 € NEQ_OS;
29: OP5 € GE_0Q;
30: OP5 € GT_OQ;
31: OP5 €< TRUE _US;
DEFAULT: Reserved;

CMPPD (128-bit Legacy SSE version)
CMPOQ < SRC1[63:0] OP3 SRC2[63:0];
CMP1 <« SRC1[127:64] OP3 SRC2[127:64];
IF CMPO = TRUE
THEN DEST[63:0] € FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] < 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] € FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] < 0000000000000000H; FI;
DEST[VLMAX-1:128] (Unmodified)

VCMPPD (VEX.128 encoded version)
CMPO < SRC1[63:0] OP5 SRC2[63:0];
CMP1 <« SRC1[127:64] OP5 SRC2[127:64];
IF CMPO = TRUE
THEN DEST[63:0] € FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] < 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] € FFFFFFFFFFFFFFFFH;

3-160 Vol.2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

ELSE DEST[127:64] < 0000000000000000H; FI;
DEST[VLMAX-1:128] €« O

VCMPPD (VEX.256 encoded version)
CMPO € SRC1[63:0] OP5 SRC2[63:0];
CMP1 € SRC1[127:64] OP5 SRC2[127:64];
CMP2 € SRC1[191:128] OP5 SRC2[191:128];
CMP3 € SRC1[255:192] OP5 SRC2[255:192];
IF CMPO = TRUE
THEN DEST[63:0] € FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] € 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] € FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] < 0000000000000000H; FI;
IF CMP2 = TRUE
THEN DEST[191:128] €« FFFFFFFFFFFFFFFFH;
ELSE DEST[191:128] €< 0000000000000000H; FI;
IF CMP3 = TRUE
THEN DEST[255:192] € FFFFFFFFFFFFFFFFH;
ELSE DEST[255:192] ¢ 0000000000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPD for equality: __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

CMPPD for less-than: __m128d _mm_cmplt_pd(__m128da, __m128d b)

CMPPD for less-than-or-equal: __m128d _mm_cmple_pd(__m128d a, __m128db)
CMPPD for greater-than: __m128d _mm_cmpgt_pd(__m128da, __m128d b)

CMPPD for greater-than-or-equal: __m128d _mm_cmpge_pd(__m128da, __m128db)
CMPPD for inequality: __m128d _mm_cmpneq_pd(__m128da, __m128db)
CMPPD for not-less-than: __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
CMPPD for not-greater-than: __m128d _mm_cmpngt_pd(__m128da, __m128db)
CMPPD for not-greater-than-or-equal: __m128d _mm_cmpnge_pd(__m128d a,
CMPPD for ordered: __m128d _mm_cmpord_pd(__m128d a, __m128d b)
CMPPD for unordered: __m128d _mm_cmpunord_pd(__m128d a, _ m128d b)
CMPPD for not-less-than-or-equal: __m128d _mm_cmpnle_pd(_m128da, __m128d b)

VCMPPD: __m256 _mm256_cmp_pd(__m256 a, __m256 b, const int imm)

m128d b)

VCMPPD: __m128 _mm_cmp_pd(__m128 a, __m128 b, const int imm)

CMPPD—Compare Packed Double-Precision Floating-Point Values Vol.2A 3-161

INSTRUCTION SET REFERENCE, A-L

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table,
Denormal.

Other Exceptions
See Exceptions Type 2.

3-162 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

CMPPS—Compare Packed Single-Precision Floating-Point Values

Opcode/ Op/ 64/32- CPUID Description
Instruction En bit Mode Feature

Flag
OF C2/rib RMI V/V SSE Compare packed single-
CMPPS xmm1, xmm2/m128, imm8 precision floating-point

values in xmmZ2/mem and
xmm1 using imm8 as
comparison predicate.

VEX.NDS.128.0F.WIG C2 /rib RVMI V/V AVX Compare packed single-
VCMPPS xmm1, xmm2, xmm3/m128, precision floating-point
imm8 values in xmm3/m128 and

xmmZ2 using bits 4:0 of
imm8 as a comparison

predicate.
VEX.NDS.256.0F.WIG C2 /rib RVMI V/V AVX Compare packed single-
VCMPPS ymm1, ymm2, ymm3/m256, precision floating-point
imm8 values in ymm3/m256 and

ymm?2 using bits 4:0 of
imm8 as a comparison

predicate.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
RVMI ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) imm8

Description

Performs a SIMD compare of the packed single-precision floating-point values in the
source operand (second operand) and the destination operand (first operand) and
returns the results of the comparison to the destination operand. The comparison
predicate operand (third operand) specifies the type of comparison performed on
each of the pairs of packed values. The result of each comparison is a doubleword
mask of all 1s (comparison true) or all 0s (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 128-bit memory location. The comparison predicate operand is an 8-bit
immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the
corresponding YMM destination register remain unchanged. Four comparisons are
performed with results written to bits 127:0 of the destination operand.

CMPPS—Compare Packed Single-Precision Floating-Point Values Vol.2A 3-163

INSTRUCTION SET REFERENCE, A-L

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, because a mask of all Os corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with "CPUID.1H:ECX.AVX =0" do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal
relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination), and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed in Table
3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPS instruction, for processors with
“"CPUID.1H:ECX.AVX =0". See Table 3-11. Compiler should treat reserved Imm8
values as illegal syntax.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Table 3-11. Pseudo-Ops and CMPPS

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmmzZ, 0
CMPLTPS xmm1, xmmZ2 CMPPS xmm1, xmmZ2, 1
CMPLEPS xmm1, xmmZ2 CMPPS xmm1, xmmz2, 2
CMPUNORDPS xmm1, xmmZ2 CMPPS xmm1, xmmz, 3
CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmmZ2, 4
CMPNLTPS xmm1, xmmZ2 CMPPS xmm1, xmmz2, 5
CMPNLEPS xmm1, xmmZ2 CMPPS xmm1, xmmZ, 6
CMPORDPS xmm1, xmmZ2 CMPPS xmm1, xmmZ2, 7

The greater-than relations not implemented by processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Enhanced Comparison Predicate for VEX-Encoded VCMPPS

3-164 Vol.2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a
128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are
zeroed. Four comparisons are performed with results written to bits 127:0 of the
destination operand.

VEX.256 encoded version: The first source operand (second operand) is a YMM
register. The second source operand (third operand) can be a YMM register or a 256-
bit memory location. The destination operand (first operand) is a YMM register. Eight
comparisons are performed with results written to the destination operand.

The comparison predicate operand is an 8-bit immediate:

®* For instructions encoded using the VEX prefix, bits 4:0 define the type of
comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate
are reserved.

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and
assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPPS instruction. See Table 3-12, where the notation of regl
and reg2 represent either XMM registers or YMM registers. Compiler should treat
reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the pseudo-
ops to pre-defined constants to support a simpler intrinsic interface.

Table 3-12. Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation
VCMPEQPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 0
VCMPLTPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 1
VCMPLEPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 2
VCMPUNORDPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 3
VCMPNEQPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 4
VCMPNLTPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 5
VCMPNLEPS reg!, reg2, reg3 VCMPPS regl, reg2, reg3, 6
VCMPORDPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 7
VCMPEQ UQPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 8
VCMPNGEPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 9
VCMPNGTPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 0AH
VCMPFALSEPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 0BH
VCMPNEQ OQPS reg!, reg2, reg3 VCMPPS regl, reg2, reg3, 0CH
VCMPGEPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, 0DH
VCMPGTPS regl, reg2, reg3 VCMPPS regl, reg2, reg3, OEH

CMPPS—Compare Packed Single-Precision Floating-Point Values Vol.2A 3-165

INSTRUCTION SET REFERENCE, A-L

Table 3-12. Pseudo-Op and VCMPPS Implementation

Pseudo-Op

CMPPS Implementation

VCMPTRUEPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, OFH

VCMPEQ _OSPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 10H

VCMPLT OQPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 11H

VCMPLE_OQPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 12H

VCMPUNORD SPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 13H

VCMPNEQ USPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 14H

VCMPNLT _UQPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 15H

VCMPNLE UQPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 16H

VCMPORD _SPS reg!, reg2, reg3

VCMPPS regl, reg2, reg3, 17H

VCMPEQ_USPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 18H

VCMPNGE _UQPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 19H

VCMPNGT _UQPS reg!, reg2, reg3

VCMPPS regl, reg2, reg3, IAH

VCMPFALSE OSPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, IBH

VCMPNEQ _OSPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, ICH

VCMPGE OQPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, IDH

VCMPGT_OQPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, IEH

VCMPTRUE_ USPS regl, reg2, reg3

VCMPPS regl, reg2, reg3, 1IFH

Operation

CASE (COMPARISON PREDICATE) OF

0: OP3 € EQ_0Q; OP5 < EQ_0Q;

:OP3 € LT OS; OP5 < LT OS;
:OP3 € LE _OS; OP5 € LE OS;

: OP3 € UNORD_Q; OP5 € UNORD Q;
: OP3 € NEQ_UQ; OP5 € NEQ UQ;
: OP3 € NLT_US; OP5 ¢ NLT_US;

: OP3 € NLE_US; OP5 ¢« NLE_US;

: OP3 € ORD_Q; OP5 € ORD _Q;

: OP5 € EQ _UQ;

: OP5 € NGE_US;

10: OP5 € NGT _US;

11: OP5 € FALSE_0Q;

12: OP5 € NEQ 0Q;

13: OP5 < GE_OS;

14: OP5 < GT_OS;

O 0 1 O Lt B W N —

3-166 Vol. 2A CMPPS—Compare Packed Single-Precision Floating-Point Values

15: OP5 € TRUE_UQ;
16: OP5 €< EQ_OS;
17: OP5 € LT _OQ;
18: OP5 € LE_0OQ;
19: OP5 € UNORD _S;
20: OP5 € NEQ US;
21: OP5 € NLT UQ;
22: OP5 € NLE_UQ;
23: OP5 € ORD_S;
24: OP5 € EQ_US;
25: OP5 € NGE_UQ;
26: OP5 € NGT_UQ;
27: OP5 € FALSE OS;
28: OP5 € NEQ_OS;
29: OP5 € GE_0Q;
30: OP5 € GT_OQ;
31: OP5 €« TRUE_US;
DEFAULT: Reserved
EASC;

CMPPS (128-bit Legacy SSE version)
CMPO < SRC1[31:0] OP3 SRC2[31:0];
CMP1 € SRC1[63:32] OP3 SRC2[63:32];
CMP2 € SRC1[95:64] OP3 SRC2[95:64];
CMP3 & SRC1[127:96] OP3 SRC2[127:96];
IF CMPO = TRUE

THEN DEST[31:0] €< FFFFFFFFH;

ELSE DEST[31:0] € 000000000H; FI;
IF CMP1 = TRUE

THEN DEST[63:32] ¢ FFFFFFFFH;

ELSE DEST[63:32] < 000000000H; FI;
IF CMP2 = TRUE

THEN DEST[95:64] € FFFFFFFFH;

ELSE DEST[95:64] < 000000000H; FI;
IF CMP3 = TRUE

THEN DEST[127:96] €« FFFFFFFFH;

ELSE DEST[127:96] < 000000000H; Fl;
DEST[VLMAX-1:128] (Unmodified)

VCMPPS (VEX.128 encoded version)
CMPO < SRC1[31:0] OP5 SRC2[31:0];
CMP1 € SRC1[63:32] OP5 SRC2[63:32];
CMP2 € SRC1[95:64] OP5 SRC2[95:64];

CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Vol.2A 3-167

INSTRUCTION SET REFERENCE, A-L

CMP3 <« SRC1[127:96] OP5 SRC2[127:96];
IF CMPO = TRUE

THEN DEST[31:0] &« FFFFFFFFH;

ELSE DEST[31:0] < 000000000H; FI;
IF CMP1 = TRUE

THEN DEST[63:32] & FFFFFFFFH;

ELSE DEST[63:32] < 000000000H; FI;
IF CMP2 = TRUE

THEN DEST[95:64] < FFFFFFFFH;

ELSE DEST[95:64] < 000000000H; FI;
IF CMP3 = TRUE

THEN DEST[127:96] < FFFFFFFFH;

ELSE DEST[127:96] < 000000000H; FI;
DEST[VLMAX-1:128] < O

VCMPPS (VEX.256 encoded version)
CMPO < SRC1[31:0] OP5 SRC2[31:0];
CMP1 €« SRC1[63:32] OP5 SRC2[63:32];
CMP2 < SRC1[95:64] OP5 SRC2[95:64];
CMP3 < SRC1[127:96] OP5 SRC2[127:96];
CMP4 < SRC1[159:128] OP5 SRC2[159:128];
CMP5 < SRC1[191:160] OP5 SRC2[191:160];
CMP6 < SRC1[223:192] OP5 SRC2[223:192];
CMP7 € SRC1[255:224] OP5 SRC2[255:224];
IF CMPO = TRUE

THEN DEST[31:0] €< FFFFFFFFH;

ELSE DEST[31:0] < 000000000H; FI;
IF CMP1 = TRUE

THEN DEST[63:32] ¢ FFFFFFFFH;

ELSE DEST[63:32] €< 000000000H; FI;
IF CMP2 = TRUE

THEN DEST[95:64] € FFFFFFFFH;

ELSE DEST[95:64] < 000000000H; FI;
IF CMP3 = TRUE

THEN DEST[127:96] € FFFFFFFFH;

ELSE DEST[127:96] < 000000000H; FI;
IF CMP4 = TRUE

THEN DEST[159:128] €« FFFFFFFFH;

ELSE DEST[159:128] €< 000000000H; FI;
IF CMP5 = TRUE

THEN DEST[191:160] €« FFFFFFFFH;

ELSE DEST[191:160] €< 000000000H; FI;
IF CMP6 = TRUE

3-168 Vol.2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

THEN DEST[223:192] & FFFFFFFFH;

ELSE DEST[223:192] <000000000H; FI;
IF CMP7 = TRUE

THEN DEST[255:224] & FFFFFFFFH;

ELSE DEST[255:224] < 000000000H; Fl;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPS for equality: __m128 _mm_cmpeq_ps(__m128a,__m128Db)

CMPPS for less-than: __m128 _mm_cmplt_ps(__m128a,__m128b)

CMPPS for less-than-or-equal: __m128 _mm_cmple_ps(__m1283a, __m128b)
CMPPS for greater-than: __m128 _mm_cmpgt_ps(__m128a,_m128b)

CMPPS for greater-than-or-equal: __m128 _mm_cmpge_ps(__m1283,__m128Db)
CMPPS for inequality: __m128 _mm_cmpneq_ps(__m128a, __m128Db)
CMPPS for not-less-than: __m128 _mm_cmpnlt_ps(__m1283a,_m128Db)

CMPPS for not-greater-than: __m128 _mm_cmpngt_ps(__m128a,__m128b)
CMPPS for not-greater-than-or-equal: __m128 _mm_cmpnge_ps(__m128 3,
CMPPS for ordered: __m128 _mm_cmpord_ps(__m128a,_m128b)

m128 b)
CMPPS for not-less-than-or-equal: __m128 _mm_cmpnle_ps(__m128a,_m128b)

VCMPPS: __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int imm)

m128b)

CMPPS for unordered: __m128 _mm_cmpunord_ps(__m128a,

VCMPPS: __m128 _mm_cmp_ps(__m128 3, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table,
Denormal.

Other Exceptions
See Exceptions Type 2.

CMPPS—Compare Packed Single-Precision Floating-Point Values Vol.2A 3-169

INSTRUCTION SET REFERENCE, A-L

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
A6 CMPS m8, m8 NP Valid Valid For legacy mode, compare
byte at address DS:(E)SI

with byte at address
€S:(E)DI; For 64-bit mode
compare byte at address
(R|E)SI to byte at address
(RIE)DI. The status flags are
set accordingly.

A7 CMPS m16, m16 NP Valid Valid For legacy mode, compare
word at address DS:(E)SI
with word at address
€S:(E)DI; For 64-bit mode
compare word at address
(R|E)SI with word at address
(R|E)DL. The status flags are
set accordingly.

A7 CMPS m32, m32 NP Valid Valid For legacy mode, compare
dword at address DS:(E)SI at
dword at address ES:(E)DI;
For 64-bit mode compare
dword at address (R|E)SI at
dword at address (R|E)DI.
The status flags are set
accordingly.

REX.W + A7 CMPS m64, m64 NP Valid N.E. Compares quadword at
address (R|E)SI with
quadword at address (R|E)DI
and sets the status flags
accordingly.

A6 CMPSB NP Valid Valid For legacy mode, compare
byte at address DS:(E)SI
with byte at address
€S:(E)DI; For 64-bit mode
compare byte at address
(RIE)SI with byte at address
(RIE)DI. The status flags are
set accordingly.

3-170 Vol. 2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
A7 CMPSW NP Valid Valid For legacy mode, compare
word at address DS:(E)SI

with word at address
ES:(E)DI; For 64-bit mode
compare word at address
(R|E)SI with word at address
(R|E)DL. The status flags are
set accordingly.

A7 CMPSD NP Valid Valid For legacy mode, compare
dword at address DS;(E)SI
with dword at address
ES:(E)DI; For 64-bit mode
compare dword at address
(RIE)SI with dword at
address (R|E)DI. The status
flags are set accordingly.

REX.W + A7 CMPSQ NP Valid N.E. Compares quadword at
address (R|E)SI with
quadword at address (R|E)DI
and sets the status flags

accordingly.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA

Description

Compares the byte, word, doubleword, or quadword specified with the first source
operand with the byte, word, doubleword, or quadword specified with the second
source operand and sets the status flags in the EFLAGS register according to the
results.

Both source operands are located in memory. The address of the first source operand
is read from DS:SI, DS:ESI or RSI (depending on the address-size attribute of the
instruction is 16, 32, or 64, respectively). The address of the second source operand
is read from ES:DI, ES:EDI or RDI (again depending on the address-size attribute of
the instruction is 16, 32, or 64). The DS segment may be overridden with a segment
override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the CMPS mnemonic) allows the two source operands to be specified explicitly.

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands Vol.2A 3-171

INSTRUCTION SET REFERENCE, A-L

Here, the source operands should be symbols that indicate the size and location of
the source values. This explicit-operand form is provided to allow documentation.
However, note that the documentation provided by this form can be misleading. That
is, the source operand symbols must specify the correct type (size) of the operands
(bytes, words, or doublewords, quadwords), but they do not have to specify the
correct location. Locations of the source operands are always specified by the
DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers, which must be loaded correctly
before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the CMPS instructions. Here also the DS:(E)SI (or RSI) and ES:(E)DI (or
RDI) registers are assumed by the processor to specify the location of the source
operands. The size of the source operands is selected with the mnemonic: CMPSB
(byte comparison), CMPSW (word comparison), CMPSD (doubleword comparison),
or CMPSQ (quadword comparison using REX.W).

After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the (E/R)SI and (E/R)DI register increment; if the DF flag is 1, the registers
decrement.) The registers increment or decrement by 1 for byte operations, by 2 for
word operations, 4 for doubleword operations. If operand size is 64, RSI and RDI
registers increment by 8 for quadword operations.

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the
REP prefix for block comparisons. More often, however, these instructions will be
used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Inte/l® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the
REP prefix.

In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is
supported using the prefix 67H. Use of the REX.W prefix promotes doubleword oper-
ation to 64 bits (see CMPSQ). See the summary chart at the beginning of this section
for encoding data and limits.

Operation

temp « SRC1 - SRC2;
SetStatusFlags(temp);

IF (64-Bit Mode)
THEN
IF (Byte comparison)
THENIFDF=0
THEN
(RIE)SI « (RIE)SI + 1;
(RIE)DI « (RIE)DI + 1;
ELSE

3-172 Vol.2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

(RIE)SI « (RIE)SI - 1;
(RIE)DI « (RIE)DI - 1;
Fl;
ELSE IF (Word comparison)
THENIFDF=0
THEN
(RIE)SI « (RIE)SI + 2;
(RIE)DI « (RIE)DI + 2;
ELSE

Fl;
ELSE IF (Doubleword comparison)
THENIFDF=0
THEN
(RIE)SI « (RIE)SI + 4;
(RIE)DI « (RIE)DI + 4;
ELSE

Fl;
ELSE (* Quadword comparison *)
THENIFDF=0
(RIE)SI « (RIE)SI + 8;
(RIE)DI « (RIE)DI + 8;
ELSE

Fl;
Fl;
ELSE (* Non-64-bit Mode *)
IF (byte comparison)
THENIFDF=0
THEN
(E)SI « (E)SI+1;
(E)DI « (E)DI + 1;
ELSE
(E)SI« (E)SI-1;
(E)DI « (E)DI - 1;
Fl;
ELSE IF (Word comparison)
THENIFDF =0
(E)SI « (E)SI+2;

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L

Vol.2A 3-173

INSTRUCTION SET REFERENCE, A-L

(E)DI « (E)DI + 2;

ELSE

Fl;

ELSE (* Doubleword comparison *)
THENIFDF=0
(E)SI « (E)SI + 4;
(E)DI « (E)DI + 4;

ELSE

Fl;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the

comparison.

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

3-174 Vol. 2A

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-L

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands Vol.2A 3-175

INSTRUCTION SET REFERENCE, A-L

CMPSD—Compare Scalar Double-Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
F2OFC2/rib RMI V/V SSE2 Compare low double-
CMPSD xmm1, xmm2/m64, imm8 precision floating-point

value in xmm2/m64 and
xmm1 using imm8 as
comparison predicate.

VEX.NDS.LIG.F2.0FWIG C2 /rib RVMI V/V AVX Compare low double
VCMPSD xmm1, xmm2, xmm3/m64, precision floating-point
imm8 value in xmm3/m64 and

xmmZ2 using bits 4:0 of
imm8 as comparison

predicate.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
RVMI ModRM:reg (w) VEX.wwwv (1) ModRM:r/m (r) imm8

Description

Compares the low double-precision floating-point values in the source operand
(second operand) and the destination operand (first operand) and returns the results
of the comparison to the destination operand. The comparison predicate operand
(third operand) specifies the type of comparison performed. The comparison result is
a quadword mask of all 1s (comparison true) or all 0s (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 64-bit memory location. The comparison predicate operand is an 8-bit
immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:64) of the
corresponding YMM destination register remain unchanged.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, because a mask of all Os corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with "CPUID.1H:ECX.AVX =0" do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal

3-176 Vol.2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in
Table 3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSD instruction, for processors with
“CPUID.1H:ECX.AVX =0". See Table 3-13. Compiler should treat reserved Imm8
values as illegal syntax.

Table 3-13. Pseudo-Ops and CMPSD

Pseudo-Op Implementation

CMPEQSD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 0
CMPLTSD xmm1, xmm2 CMPSD xmm1,xmmz, 1
CMPLESD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 2
CMPUNORDSD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 3
CMPNEQSD xmm1, xmmZ2 CMPSD xmm1,xmm2, 4
CMPNLTSD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 5
CMPNLESD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 6
CMPORDSD xmm1, xmmZ2 CMPSD xmm1,xmm2, 7

The greater-than relations not implemented in the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPSD

VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a 64-
bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.
The comparison predicate operand is an 8-bit immediate:

®* For instructions encoded using the VEX prefix, bits 4:0 define the type of
comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate
are reserved.

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and

CMPSD—Compare Scalar Double-Precision Floating-Point Values Vol.2A 3-177

INSTRUCTION SET REFERENCE, A-L

assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPSD instruction. See Table 3-14, where the notations of regl
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.

Table 3-14. Pseudo-Op and VCMPSD Implementation

Pseudo-Op

CMPSD Implementation

VCMPEQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 0

VCMPLTSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 1

VCMPLESD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 2

VCMPUNORDSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 3

VCMPNEQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 4

VCMPNLTSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 5

VCMPNLESD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 6

VCMPORDSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 7

VCMPEQ UQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, §

VCMPNGESD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 9

VCMPNGTSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 0AH

VCMPFALSESD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 0BH

VCMPNEQ_OQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 0CH

VCMPGESD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 0DH

VCMPGTSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, OEH

VCMPTRUESD regl, reg2, reg3

VCMPSD regl, reg2, reg3, OFH

VCMPEQ OSSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 10H

VCMPLT OQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 11H

VCMPLE _OQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 12H

VCMPUNORD SSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 13H

VCMPNEQ USSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 14H

VCMPNLT _UQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 15H

VCMPNLE UQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 16H

VCMPORD SSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 17H

VCMPEQ USSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 18H

VCMPNGE _UQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 19H

VCMPNGT UQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 1AH

3-178 Vol.2A

CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Table 3-14. Pseudo-Op and VCMPSD Implementation

Pseudo-Op

CMPSD Implementation

VCMPFALSE OSSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, IBH

VCMPNEQ OSSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, ICH

VCMPGE _OQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, IDH

VCMPGT_OQSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, IEH

VCMPTRUE USSD regl, reg2, reg3

VCMPSD regl, reg2, reg3, 1IFH

Operation

CASE (COMPARISON PREDICATE) OF

0:

O 00 3 &N L A W N —

—_
— O

NN DN NN NN NN — = = e e
0 1N b W= OOV I W b W

OP3 < EQ_0OQ; OP5 < EQ_OQ;

:OP3 € LT OS; OP5 < LT OS;

:OP3 € LE OS; OP5 € LE OS;

: OP3 € UNORD_Q; OP5 €< UNORD Q;
: OP3 € NEQ UQ; OP5 € NEQ UQ;
:OP3 € NLT_US; OP5 €« NLT US;

: OP3 € NLE US; OP5 € NLE _US;

: OP3 € ORD Q; OP5 € ORD Q;

: OP5 € EQ _UQ;

: OP5 € NGE _US;

: OP5 € NGT_US;

: OP5 € FALSE_0Q;
: OP5 € NEQ 0Q;

: OP5 € GE_OS;

: OP5 € GT_OS;

: OP5 € TRUE_UQ;
: OP5 € EQ OS;

: OP5 € LT _OQ;

: OP5 € LE_OQ;

: OP5 € UNORD S;
: OP5 € NEQ US;

: OP5 € NLT_UQ;

: OP5 € NLE_UQ;

: OP5 € ORD _S;

: OP5 € EQ _US;

: OP5 € NGE_UQ;

: OP5 € NGT_UQ;

: OP5 € FALSE_OS;
: OP5 € NEQ OS;

CMPSD—Compare Scalar Double-Precision Floating-Point Values

Vol.2A 3-179

INSTRUCTION SET REFERENCE, A-L

29: OP5 € GE_0Q;

30: OP5 €« GT_0OQ;

31: OP5 € TRUE _US;

DEFAULT: Reserved
ESAC;

CMPSD (128-bit Legacy SSE version)

CMPO < DEST[63:0] OP3 SR(C[63:0];

IF CMPO = TRUE

THEN DEST[63:0] €< FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] € 0000000000000000H; FI;
DEST[VLMAX-1:64] (Unmodified)

VCMPSD (VEX.128 encoded version)

CMPO < SRC1[63:0] OP5 SRC2[63:0];

IF CMPO = TRUE

THEN DEST[63:0] € FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] € 0000000000000000H; FI;
DEST[127:64] €« SRC1[127:64]
DEST[VLMAX-1:128] € 0

Intel C/C++ Compiler Intrinsic Equivalents

CMPSD for equality: __m128d _mm_cmpeq_sd(__m128da, __m128db)

CMPSD for less-than: __m128d _mm_cmplt_sd(__m128d a, __m128db)

CMPSD for less-than-or-equal: __m128d _mm_cmple_sd(__m128d a3, __ m128db)
CMPSD for greater-than: __m128d _mm_cmpgt_sd(__m128da, __m128d b)

CMPSD for greater-than-or-equal: __m128d _mm_cmpge_sd(__m128d a, __m128d b)
CMPSD for inequality: __m128d _mm_cmpneq_sd(__m128da,__m128db)

CMPSD for not-less-than: __m128d _mm_cmpnlt_sd(__m128da, __ m128d b)

CMPSD for not-greater-than: __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
CMPSD for not-greater-than-or-equal: __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
CMPSD for ordered: __m128d _mm_cmpord_sd(__ m128da, __m128d b)

CMPSD for unordered: __m128d _mm_cmpunord_sd(__m128da, __m128d b)

CMPSD for not-less-than-or-equal: __m128d _mm_cmpnle_sd(__m128da, __m128d b)

VCMPSD: __m128 _mm_cmp_sd(__m128 a, __m128 b, const int imm)
SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table,
Denormal.

3-180 Vol.2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Other Exceptions
See Exceptions Type 3.

CMPSD—Compare Scalar Double-Precision Floating-Point Values Vol.2A 3-181

INSTRUCTION SET REFERENCE, A-L

CMPSS—Compare Scalar Single-Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
F30FC2/rib RMI V/V SSE Compare low single-
CMPSS xmm1, xmm2/m32, imm8 precision floating-point

value in xmm2/m32 and
xmm1 using imm8 as
comparison predicate.

VEX.NDS.LIG.F3.0FWIG C2 /rib RVMI V/V AVX Compare low single
VCMPSS xmm1, xmm2, xmm3/m32, precision floating-point
imm8 value in xmm3/m32 and

xmm?2 using bits 4:0 of
imm8 as comparison

predicate.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA
RVMI ModRM:reg (w) VEX.vwwv (1) ModRM:r/m (r) imm8

Description

Compares the low single-precision floating-point values in the source operand
(second operand) and the destination operand (first operand) and returns the results
of the comparison to the destination operand. The comparison predicate operand
(third operand) specifies the type of comparison performed. The comparison result is
a doubleword mask of all 1s (comparison true) or all 0s (comparison false).

128-bit Legacy SSE version: The first source and destination operand (first operand)
is an XMM register. The second source operand (second operand) can be an XMM
register or 64-bit memory location. The comparison predicate operand is an 8-bit
immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:32) of the
corresponding YMM destination register remain unchanged.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, since a mask of all Os corre-
sponds to a floating-point value of +0.0 and a mask of all 1s corresponds to a QNaN.

Note that processors with "CPUID.1H:ECX.AVX =0" do not implement the “greater-
than”, “greater-than-or-equal”, “not-greater than”, and “not-greater-than-or-equal

3-182 Vol.2A CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

relations” predicates. These comparisons can be made either by using the inverse
relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the
program must swap the operands (copying registers when necessary to protect the
data that will now be in the destination operand), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in
Table 3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSS instruction, for processors with
“CPUID.1H:ECX.AVX =0". See Table 3-15. Compiler should treat reserved Imm8
values as illegal syntax.

Table 3-15. Pseudo-Ops and CMPSS

Pseudo-Op CMPSS Implementation
CMPEQSS xmm1, xmmZ2 CMPSS xmm1, xmmZ, 0
CMPLTSS xmm1, xmm2 CMPSS xmm1, xmmZ, 1
CMPLESS xmm1, xmmZ2 CMPSS xmm1, xmmZ2, 2
CMPUNORDSS xmm1, xmmZ2 CMPSS xmm1, xmmZ2, 3
CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4
CMPNLTSS xmm1, xmmZ2 CMPSS xmm1, xmmZ2, 5
CMPNLESS xmm1, xmmZ2 CMPSS xmm1, xmmZ2, 6
CMPORDSS xmm1, xmmZ2 CMPSS xmm1, xmmz, 7

The greater-than relations not implemented in the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPSD

VEX.128 encoded version: The first source operand (second operand) is an XMM
register. The second source operand (third operand) can be an XMM register or a 32-
bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.
The comparison predicate operand is an 8-bit immediate:

®* For instructions encoded using the VEX prefix, bits 4:0 define the type of
comparison to be performed (see Table 3-9). Bits 5 through 7 of the immediate
are reserved.

Processors with "CPUID.1H:ECX.AVX =1" implement the full complement of 32 pred-
icates shown in Table 3-9, software emulation is no longer needed. Compilers and

CMPSS—Compare Scalar Single-Precision Floating-Point Values Vol.2A 3-183

INSTRUCTION SET REFERENCE, A-L

assemblers may implement the following three-operand pseudo-ops in addition to
the four-operand VCMPSS instruction. See Table 3-16, where the notations of regl
reg2, and reg3 represent either XMM registers or YMM registers. Compiler should
treat reserved Imm8 values as illegal syntax. Alternately, intrinsics can map the
pseudo-ops to pre-defined constants to support a simpler intrinsic interface.

Table 3-16. Pseudo-Op and VCMPSS Implementation

Pseudo-Op

CMPSS Implementation

VCMPEQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 0

VCMPLTSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 1

VCMPLESS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 2

VCMPUNORDSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 3

VCMPNEQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 4

VCMPNLTSS reg!, reg2, reg3

VCMPSS regl, reg2, reg3, 5

VCMPNLESS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 6

VCMPORDSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 7

VCMPEQ UQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 8

VCMPNGESS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 9

VCMPNGTSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 0AH

VCMPFALSESS reg!, reg2, reg3

VCMPSS regl, reg2, reg3, 0BH

VCMPNEQ_OQSS reg!, reg2, reg3

VCMPSS regl, reg2, reg3, 0CH

VCMPGESS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 0DH

VCMPGTSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, OEH

VCMPTRUESS regl, reg2, reg3

VCMPSS regl, reg2, reg3, OFH

VCMPEQ_ OSSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 10H

VCMPLT OQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 11H

VCMPLE_OQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 12H

VCMPUNORD SSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 13H

VCMPNEQ USSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 14H

VCMPNLT _UQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 15H

VCMPNLE _UQSS reg!, reg2, reg3

VCMPSS regl, reg2, reg3, 16H

VCMPORD _SSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 17H

VCMPEQ_USSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 18H

VCMPNGE _UQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, 19H

VCMPNGT _UQSS reg!, reg2, reg3

VCMPSS regl, reg2, reg3, IAH

3-184 Vol.2A

CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Table 3-16. Pseudo-Op and VCMPSS Implementation

Pseudo-Op

CMPSS Implementation

VCMPFALSE OSSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, IBH

VCMPNEQ OSSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, ICH

VCMPGE_OQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, IDH

VCMPGT_OQSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, IEH

VCMPTRUE USSS regl, reg2, reg3

VCMPSS regl, reg2, reg3, IFH

Operation

CASE (COMPARISON PREDICATE) OF

0:

O 0 13 N Lt A W N —

—_
—_ O

W N DN DN DD DNDNDNDDNDDNDDND= = = = = = —= —
S O 0 I NN B W= OO I N D W

OP3 € EQ_0Q; OP5 € EQ 0Q;

:OP3 € LT OS; OP5 €« LT OS;

:OP3 € LE_OS; OP5 € LE OS;

: OP3 € UNORD_Q; OP5 € UNORD Q;
: OP3 € NEQ UQ; OP5 €« NEQ UQ;

: OP3 € NLT_US; OP5 < NLT_US;

: OP3 € NLE_US; OP5 < NLE_US;
:OP3 € ORD_Q; OP5 € ORD _Q;

: OP5 € EQ UQ;

: OP5 € NGE _US;

: OP5 € NGT_US;

: OP5 € FALSE_0Q;
: OP5 € NEQ_0Q;

: OP5 € GE_OS;
:OP5 € GT_OS;

: OP5 € TRUE_UQ;
: OP5 € EQ OS;
:OP5 € LT 0OQ;
:OP5 € LE _0Q;

: OP5 € UNORD S;
: OP5 € NEQ US;

: OP5 € NLT_UQ;

: OP5 € NLE_UQ;
:OP5 € ORD S;
:OP5 € EQ US;

: OP5 € NGE_UQ;

: OP5 € NGT _UQ;

: OP5 € FALSE OS;
: OP5 € NEQ OS;

: OP5 € GE_0Q;

: OP5 € GT_0Q;

CMPSS—Compare Scalar Single-Precision Floating-Point Values

Vol.2A 3-185

INSTRUCTION SET REFERENCE, A-L

31: OP5 €« TRUE _US;
DEFAULT: Reserved
ESAC;

CMPSS (128-bit Legacy SSE version)
CMPO < DEST[31:0] OP3 SRC[31:0];
IF CMPO = TRUE

THEN DEST[31:0] € FFFFFFFFH;
ELSE DEST[31:0] € 00000000H; F;
DEST[VLMAX-1:32] (Unmodified)

VCMPSS (VEX.128 encoded version)
CMPO < SRC1[31:0] OP5 SRC2[31:0];
IF CMPO = TRUE

THEN DEST[31:0] € FFFFFFFFH;
ELSE DEST[31:0] € 00000000H; FI;
DEST[127:32] €« SRC1[127:32]
DEST[VLMAX-1:128] € 0

Intel C/C++ Compiler Intrinsic Equivalents

CMPSS for equality: __m128 _mm_cmpeq_ss(__m1283a,_m128b)
CMPSS for less-than: __m128 _mm_cmplt_ss(__m128a,__m128b)
CMPSS for less-than-or-equal: __m128 _mm_cmple_ss(__m1284a,__m128b)
CMPSS for greater-than: __m128 _mm_cmpgt_ss(__m1284a,_m128Db)
CMPSS for greater-than-or-equal: __m128 _mm_cmpge_ss(__m128 a,

m128 b)

CMPSS for inequality: __m128 _mm_cmpneq_ss(__m128a,__m128b)

m128 b)

CMPSS for not-greater-than: __m128 _mm_cmpngt_ss(_m128a,__m128Db)

m128 b)

CMPSS for not-less-than: __m128 _mm_cmpnlt_ss(__m128 3,

CMPSS for not-greater-than-or-equal: __m128 _mm_cmpnge_ss(__m128 a,
CMPSS for ordered: __m128 _mm_cmpord_ss(__m128a,_m128b)

m128b)
CMPSS for not-less-than-or-equal: __m128 _mm_cmpnle_ss(__m1284a,_m128b)

CMPSS for unordered: __m128 _mm_cmpunord_ss(__m128 a,

VCMPSS: __m128 _mm_cmp_ss(__m128a,_m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table,
Denormal.

3-186 Vol. 2A CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-L

Other Exceptions
See Exceptions Type 3.

CMPSS—Compare Scalar Single-Precision Floating-Point Values Vol.2A 3-187

INSTRUCTION SET REFERENCE, A-L

CMPXCHG—Compare and Exchange

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF BO/r CMPXCHG r/m8,r8 MR Valid Valid* Compare AL with /m8. If

equal, ZF is set and r8is
loaded into r/m8. Else, clear
ZF and load r/m8into AL.

REX + OF BO/r CMPXCHG MR Valid N.E. Compare AL with r/m8. If
r/m8**r8 equal, ZF is set and r8is
loaded into r/m8. Else, clear
ZF and load r/m8into AL.

OF B1/r CMPXCHG r/m16, MR Valid Valid* Compare AX with /m16. If
rie equal, ZFissetand r16is
loaded into r/m16. Else,
clear ZF and load r/m16into

AX.
OF B1/r CMPXCHG r/m32, MR Valid Valid* Compare EAX with r/m32. If
r32 equal, ZF is set and r32is

loaded into r/m32. Else,
clear ZF and load r/m32into

EAX.
REX.W + OF CMPXCHG r/m64, MR Valid N.E. Compare RAX with r/m64. If
B1/r re4 equal, ZF is set and r64 is

loaded into r/m64. Else,
clear ZF and load r/m64 into
RAX.

NOTES:
* See the IA-32 Architecture Compatibility section below.

**|n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
Description

Compares the value in the AL, AX, EAX, or RAX register with the first operand (desti-
nation operand). If the two values are equal, the second operand (source operand) is
loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.

3-188 Vol. 2A CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-L

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. To simplify the interface to the processor’s bus, the destination
operand receives a write cycle without regard to the result of the comparison. The
destination operand is written back if the comparison fails; otherwise, the source
operand is written into the destination. (The processor never produces a locked read
without also producing a locked write.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 proces-
sors.

Operation

(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or
quadword comparison is being performed *)

IF accumulator = DEST
THEN
IF « 1;
DEST « SRC;
ELSE
ZF « Q;
accumulator « DEST;
Fl;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX
are equal; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to
the results of the comparison operation.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

CMPXCHG—Compare and Exchange Vol.2A 3-189

INSTRUCTION SET REFERENCE, A-L

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-190 Vol. 2A CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-L

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OFC7/1m64 CMPXCHG8B m64 M Valid Valid* Compare EDX:EAX with

mb64. If equal, set ZF and
load ECX:EBX into m64. Else,
clear ZF and load m64 into

EDX:EAX.
REX.W +0F C7 CMPXCHG16B M Valid N.E. Compare RDX:RAX with
/1m128 m128 m128.If equal, set ZF and

load RCX:RBX into m128.
Else, clear ZF and load m128

into RDX:RAX.
NOTES:
*See IA-32 Architecture Compatibility section below.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r, w) NA NA NA

Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size
is 128 bits) with the operand (destination operand). If the values are equal, the
64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored in the destination
operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or
RDX:RAX). The destination operand is an 8-byte memory location (or 16-byte
memory location if operand size is 128 bits). For the EDX:EAX and ECX:EBX register
pairs, EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-
order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX
and RCX contain the high-order 64 bits and RAX and RBX contain the low-order
64bits of a 128-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. To simplify the interface to the processor’s bus, the destination
operand receives a write cycle without regard to the result of the comparison. The
destination operand is written back if the comparison fails; otherwise, the source
operand is written into the destination. (The processor never produces a locked read
without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes
operation to 128 bits. Note that CMPXCHG16B requires that the destination
(memory) operand be 16-byte aligned. See the summary chart at the beginning of
this section for encoding data and limits. For information on the CPUID flag that indi-
cates CMPXCHG16B, see page 3-215.

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes Vol.2A 3-191

INSTRUCTION SET REFERENCE, A-L

IA-32 Architecture Compatibility

This instruction encoding is not supported on Intel processors earlier than the

Pentium processors.

Operation

IF (64-Bit Mode and OperandSize = 64)

THEN

IF (RDX:RAX = DEST)

ZF«1;

DEST « RCX:RBX;

ELSE
ZF «C;

RDX:RAX « DEST;

Fl
ELSE

IF (EDX:EAX = DEST)

ZF«1;

DEST « ECX:EBX;

ELSE
ZF «C;

EDX:EAX « DEST;

Fl;
Fl;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions

#UD
#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

3-192 Vol.2A

If the destination is not a memory operand.
If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-L

Real-Address Mode Exceptions

#UD If the destination operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.
If memory operand for CMPXCHG16B is not aligned on a 16-byte
boundary.
If CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.
#UD If the destination operand is not a memory location.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes Vol.2A 3-193

INSTRUCTION SET REFERENCE, A-L

COMISD—Compare Scalar Ordered Double-Precision Floating-Point
Values and Set EFLAGS

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
66 OF 2F /r RM VNV SSe2 Compare low double-
COMISD xmm1, xmm2/m64 precision floating-point

values in xmm1 and
xmmZ2/mem64 and set the

EFLAGS flags accordingly.
VEX.LIG.66.0F.WIG 2F /r RM VNV AVX Compare low double
VCOMISD xmm1, xmm2/m64 precision floating-point

values in xmm1 and
xmm2/mem64 and set the

EFLAGS flags accordingly.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r) ModRM:r/m (r) NA NA

Description

Compares the double-precision floating-point values in the low quadwords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory
location.

The COMISD instruction differs from the UCOMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#1I) when a source operand is either
a QNaN or SNaN. The UCOMISD instruction signals an invalid numeric exception only
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

3-194 Vol. 2A COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, A-L

Operation

RESULT « OrderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZFPFCF « 111;
GREATER_THAN: ZF PF,CF < 000;
LESS_THAN: ZFPF,CF « 001;
EQUAL: ZF PF,CF « 100;
ESAC;
OF, AF, SF < 0;}

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_sd (__m128da, __m128db)
int _mm_comilt_sd (__m128da, __m128d b)
int _mm_comile_sd (__m128da, __m128db)
m128d b)
int _mm_comige_sd (__m128d a, __m128db)

int _mm_comigt_sd (__m128d a,

int _mm_comineq_sd (__m128da, __m128db)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv I= 1111B.

COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set Vol.2A 3-195
EFLAGS

INSTRUCTION SET REFERENCE, A-L

COMISS—Compare Scalar Ordered Single-Precision Floating-Point
Values and Set EFLAGS

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En Mode Feature

Flag
OF 2F /1 RM VNV SSE Compare low single-
COMISS xmm1, xmm2/m32 precision floating-point

values in xmm1 and
xmmZ2/mem32 and set the

EFLAGS flags accordingly.
VEX.UIG.OF 2F.WIG /r RM VNV AVX Compare low single
VCOMISS xmm1, xmm2/m32 precision floating-point

values in xmm1 and
xmmZ2/mem32 and set the

EFLAGS flags accordingly.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r) ModRM:r/m (r) NA NA

Description

Compares the single-precision floating-point values in the low doublewords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The
unordered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory
location.

The COMISS instruction differs from the UCOMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#1I) when a source operand is either
a QNaN or SNaN. The UCOMISS instruction signals an invalid numeric exception only
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise
instructions will #UD.

3-196 Vol. 2A COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-L

Operation

RESULT « OrderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZFPFECF 111;
GREATER_THAN: ZF PF,CF < 000;
LESS_THAN: ZFPF,CF < 001;
EQUAL: ZF PF,CF « 100;
ESAC;
OF AFSF « 0:}

Intel C/C++ Compiler Intrinsic Equivalents
int _mm_comieq_ss (__m128a,__m128Db)

int _mm_comilt_ss(_m1283a,__m128Db)

int _mm_comile_ss (__m128a,__m128b)
m128 b)

int _mm_comige_ss (__m128a,__m128Db)

int _mm_comigt_ss (_m128a,

int _mm_comineq_ss (_m1283a,_m128b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv I= 1111B.

COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS Vol.2A 3-197

INSTRUCTION SET REFERENCE, A-L

CPUID—CPU Identification

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF A2 CPUID NP Valid Valid Returns processor

identification and feature
information to the EAX,
EBX, ECX, and EDX
registers, as determined by
input entered in EAX (in
some cases, ECX as well).

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction. This instruction operates the same in non-
64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX,
and EDX registers.! The instruction’s output is dependent on the contents of the EAX
register upon execution (in some cases, ECX as well). For example, the following
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return
Value and the Vendor Identification String in the appropriate registers:

MOV EAX, OOH
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the
EAX register. Table 3-18 shows the maximum CPUID input value recognized for each
family of IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a
value entered for CPUID.EAX is higher than the maximum input value for basic or
extended function for that processor then the data for the highest basic information
leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = O5H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = OAH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)

1. OnIntel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all
modes.

3-198 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

CPUID.EAX = OCH (* INVALID: Returns the same information as CPUID.EAX = OBH. *)
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = B0O00O000AH (* INVALID: Returns same information as CPUID.EAX = OBH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value
and the leaf is not supported on that processor then 0 is returned in all the registers.
For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = O7H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input
EAX value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Seri-
alizing instruction execution guarantees that any modifications to flags, registers,
and memory for previous instructions are completed before the next instruction is
fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Inte/® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Table 3-17. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor
Basic CPUID Information
OH EAX Maximum Input Value for Basic CPUID Information (see Table 3-18)
EBX “Genu”
ECX “ntel”
EDX "inel”
01H EAX Version Information: Type, Family, Model, and Stepping ID (see
Figure 3-5)
EBX Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors
in this physical package*.
Bits 31-24: Initial APIC ID
ECX Feature Information (see Figure 3-6 and Table 3-20)
EDX Feature Information (see Figure 3-7 and Table 3-21)

CPUID—CPU ldentification Vol. 2A 3-199

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

NOTES:

* The nearest power-of-2 integer that is not smaller than EBX[23:16]
is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package. This field is only valid
if CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX Cache and TLB Information (see Table 3-22)
EBX Cache and TLB Information
ECX Cache and TLB Information
EDX Cache and TLB Information

O03H EAX Reserved.

EBX Reserved.

ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium Il
processor only; otherwise, the value in this register is reserved.)

EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium Il
processor only; otherwise, the value in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.

CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLE.BOOT_NT4[bit 22] = O (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*

See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters
for each level on page 3-225.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

3-200 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX
EDX

Bits 13-10: Reserved

Bits 25-14: Maximum number of addressable IDs for logical processors
sharing this cache**, ***

Bits 31-26: Maximum number of addressable IDs for processor cores in
the physical package**, ****, ***x*

Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

Bits 31-00: S = Number of Sets**

Bit O: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.
Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using
all address bits.
Bits 31-03: Reserved = 0

NOTES:

* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return O.
Invalid sub-leaves of EAX = 04H: ECX =n,n > 3.

** Add one to the return value to get the result.

***The nearest power-of-2 integer that is not smaller than (1 +
EAX[25:14]) is the number of unique initial APIC IDs reserved for
addressing different logical processors sharing this cache

**** The nearest power-of-2 integer that is not smaller than (1 +
EAX[31:26]) is the number of unique Core_IDs reserved for address-
ing different processor cores in a physical package. Core ID is a sub-
set of bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid
ECX values start from O.

MONITOR/MWAIT Leaf

O5H

EAX

Bits 15-00: Smallest monitor-line size in bytes (default is processor’s
monitor granularity)
Bits 31-16: Reserved = 0

CPUID—CPU ldentification

Vol.2A 3-201

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX

EDX

Bits 15-00: Largest monitor-line size in bytes (default is processor’s
monitor granularity)
Bits 31-16: Reserved = 0

Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and
EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even
when interrupts disabled

Bits 31 - 02: Reserved

Bits 03 - 00: Number of CO* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0

NOTE:

* The definition of CO through C4 states for MWAIT extension are pro-
cessor-specific C-states, not ACPI C-states.

Thermal and Power Management Leaf

06H

EAX

EBX

ECX

EDX

Bit 00: Digital temperature sensor is supported if set

Bit 01: Intel Turbo Boost Technology Available (see description of
IA32_MISC_ENABLE[38]).

Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved

Bit 04: PLN. Power limit notification controls are supported if set.

Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.

Bits 31 - 07: Reserved

Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

Bit 00: Hardware Coordination Feedback Capability (Presence of
IA32_MPERF and IA32_APERF). The capability to provide a measure of
delivered processor performance (since last reset of the counters), as
a percentage of expected processor performance at frequency speci-
fied in CPUID Brand String

Bits 02 - 01: Reserved =0

Bit 03: The processor supports performance-energy bias preference if
CPUID.O6H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1BOH)

Bits 31 - 04: Reserved = 0

Reserved =0

3-202 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX
input value)
07H Sub-leaf O (Input ECX = 0). *
EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-
leaves.
EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGS-
BASE if 1.
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: Reserved
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software
that manages process-context identifiers.
Bit 31:11: Reserved
ECX Reserved
EDX Reserved
NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return O.
Invalid sub-leaves of EAX = 07H: ECX =n,n > 0.
Direct Cache Access Information Leaf
09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address
1F8H)
EBX Reserved
ECX Reserved
EDX Reserved
Architectural Performance Monitoring Leaf
OAH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

CPUID—CPU Identification

Vol.2A 3-203

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX
EDX

Bit 00: Core cycle event not available if 1

Bit 01: Instruction retired event not available if 1

Bit 02: Reference cycles event not available if 1

Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

Reserved =0

Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sionID > 1)

Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sionID > 1)

Reserved =0

Extended Topology Enumeration Leaf

0BH

EAX

EBX

ECX

EDX

NOTES:
Most of Leaf OBH output depends on the initial value in ECX.
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
If ECX contains an invalid sub-leaf index, EAX/EBX/EDX return 0; ECX

returns same ECX input. Invalid sub-leaves of EAX = OBH: ECX = n, n
> 1.

Leaf OBH exists if EBX[15:0] is not zero.

Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique
topology ID of the next level type*. All logical processors with the
same next level ID share current level.

Bits 31-05: Reserved.

Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**,
Bits 31- 16: Reserved.

Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

Bits 31- 00: x2APIC ID the current logical processor.

3-204 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor
topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology
of the system. This value in this field (EBX[15:0]) is only intended for
display/diagnostic purposes. The actual number of logical processors
available to BIOS/0S/Applications may be different from the value of
EBX[15:0], depending on software and platform hardware configura-
tions.

*** The value of the “level type” field is not related to level numbers in
any way, higher “level type” values do not mean higher levels. Level
type field has the following encoding:

0:invalid

1:SMT

2 : Core

3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = ODH, ECX = 0)

ODH

NOTES:
Leaf ODH main leaf (ECX = Q).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCRO. If
a bit is 0, the corresponding bit field in XCRO is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) required by enabled features in XCRO. May
be different than ECX if some features at the end of the XSAVE save
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required
by all supported features in the processor, i.e all the valid bit fields in
XCRO.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCRO. If a
bit is O, the corresponding bit field in XCRO is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = ODH, ECX = 1)

CPUID—CPU Identification Vol. 2A 3-205

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
ODH EAX Bits 31-01: Reserved
Bit 00: XSAVEOQPT is available;

EBX Reserved

ECX Reserved

EDX Reserved

Processor Extended State Enumeration Sub-leaves (EAX = ODH, ECX =n,n > 1)

ODH NOTES:
Leaf ODH output depends on the initial value in ECX.
Each valid sub-leaf index maps to a valid bit in the XCRO register
starting at bit position 2
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return
0. Invalid sub-leaves of EAX = ODH: ECX =n,n > 2.

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the
save area for an extended state feature associated with a valid sub-
leaf index, n. This field reports O if the sub-leaf index, n, is invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component's save
area from the beginning of the XSAVE/XRSTOR area.

This field reports O if the sub-leaf index, n, is invalid*.

ECX This field reports O if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.

Unimplemented CPUID Leaf Functions

40000000H Invalid. No existing or future CPU will return processor identification or
- feature information if the initial EAX value is in the range 40000000H
4FFFFFFFH to 4FFFFFFFH.

Extended Function CPUID Information

80000000H | EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX Reserved

ECX Reserved

EDX Reserved

3-206 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
80000001H | EAX Extended Processor Signature and Feature Bits.
EBX Reserved
ECX Bit 00: LAHF/SAHF available in 64-bit mode
Bits 31-01 Reserved
EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0
80000002H | EAX Processor Brand String
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000003H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000004H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000005H | EAX Reserved =0
EBX Reserved =0
ECX Reserved =0
EDX Reserved =0
80000006H | EAX Reserved =0
EBX Reserved =0
ECX Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
EDX Reserved =0

CPUID—CPU Identification

Vol. 2A 3-207

INSTRUCTION SET REFERENCE, A-L

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

NOTES:
* |2 associativity field encodings:
OOH - Disabled
O01H - Direct mapped
02H - 2-way
04H - 4-way
0O6H - 8-way
08H - 16-way
OFH - Fully associative

80000007H | EAX Reserved =0

EBX Reserved =0

ECX Reserved =0

EDX Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved =0

80000008H | EAX Linear/Physical Address size

Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved =0

EBX Reserved =0

ECX Reserved =0

EDX Reserved =0
NOTES:

* |f CPUID.BOOO0008H:EAX[7:0] is supported, the maximum physical
address number supported should come from this field.

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and
the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the
CPUID recognizes for returning basic processor information. The value is returned in
the EAX register (see Table 3-18) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel
processors, the string is “"Genuinelntel” and is expressed:

EBX « 756e6547h (* "Genu”, with G in the low eight bits of BL *)
EDX « 49656e69h (* “inel”, with i in the low eight bits of DL *)
ECX « 6c65746eh (* "ntel”, with n in the low eight bits of CL *)

3-208 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor

Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest
value the processor recognizes for returning extended processor information. The
value is returned in the EAX register (see Table 3-18) and is processor specific.

Table 3-18. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Intel 64 or IA-32 Processors

Highest Value in EAX

Basic Information

Extended Function
Information

Earlier Intel486 Processors

CPUID Not Implemented

CPUID Not Implemented

Later Intel486 Processors and 01H Not Implemented
Pentium Processors

Pentium Pro and@Pentium@H 02H Not Implemented
Processors, Intel Celeron

Processors

Pentium Il Processors 03H Not Implemented
Pentium 4 Processors 02H 80000004H
Intel Xeon Processors 02H 80000004H
Pentium M Processor 02H 80000004H
Pentium 4 Processor O5H 80000008H
supporting Hyper-Threading

Technology

Pentium D Processor (8xx) O5H 80000008H
Pentium D Processor (9xx) 06H 80000008H
Intel Core Duo Processor OAH 80000008H
Intel Core 2 Duo Processor OAH 80000008H
Intel Xeon Processor 3000, OAH 80000008H
5100, 5200, 5300, 5400

Series

Intel Core 2 Duo Processor ODH 80000008H
8000 Series

Intel Xeon Processor 5200, OAH 80000008H
5400 Series

Intel Atom Processor OAH 80000008H
Intel Core i7 Processor OBH 80000008H

CPUID—CPU Identification

Vol. 2A 3-209

INSTRUCTION SET REFERENCE, A-L

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID
MSR is loaded with the update signature whenever CPUID executes. The signature is
returned in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see
Figure 3-5). For example: model, family, and processor type for the Intel Xeon
processor 5100 series is as follows:

® Model — 1111B
®* Family — 0101B
® Processor Type — 00B

See Table 3-19 for available processor type values. Stepping IDs are provided as

needed.
31 28 27 20 19 16 15 14 13 12 11 8 7 4 3 0
Extended Extended Family Stepping
EAX Family ID |Model ID ID Model ID
Extended Family ID (0) |
Extended Model ID (0)
Processor Type
Family (OFH for the Pentium 4 Processor Family)
Model
D Reserved
OM16525

Figure 3-5. Version Information Returned by CPUID in EAX

3-210 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-19. Processor Type Field

Type Encoding
Original OEM Processor 00B
Intel OverDrive Processor 01B
Dual processor (not applicable to Intel486 10B
processors)
Intel reserved 11B
NOTE

See Chapter 15 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for information on identifying earlier
IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is OFH. Inte-
grate the fields into a display using the following rule:

IF Family_ID # OFH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

Fl;

(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or OFH.
Integrate the field into a display using the following rule:

IF (Family_ID = 06H or Family_ID = OFH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

Fl;

(* Show DisplayModel as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the
EBX register:

®* Brand index (low byte of EBX) — this number provides an entry into a brand
string table that contains brand strings for IA-32 processors. More information
about this field is provided later in this section.

® CLFLUSH instruction cache line size (second byte of EBX) — this number
indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte
increments. This field was introduced in the Pentium 4 processor.

CPUID—CPU Identification Vol.2A 3-211

INSTRUCTION SET REFERENCE, A-L

®* Local APICID (high byte of EBX) — this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up. This field was introduced in the
Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and
EDX.

® Figure 3-6 and Table 3-20 show encodings for ECX.
®* Figure 3-7 and Table 3-21 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly
interpret feature flags.

NOTE

Software must confirm that a processor feature is present using
feature flags returned by CPUID prior to using the feature. Software
should not depend on future offerings retaining all features.

3-212 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

313029 28 27 26 2524 2322212019181716 151413121110 9 8 7 6 5 4

321 0

ECX
0

RDRAND]

F16C
AVX
OSXSAVE
XSAVE
AES
TSC-Deadline
POPCNT
MOVBE
x2APIC
SSE4 2 — SSE4.2
SSE4_1— SSE4.1
DCA — Direct Cache Access
PCID — Process-context Identifiers
PDCM — Perf/Debug Capability MSR
xTPR Update Control
CMPXCHG16B
FMA — Fused Multiply Add
CNXT-ID — L1 Context ID
SSSE3 — SSSE3 Extensions
TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology
SMX — Safer Mode Extensions
VMX — Virtual Machine Extensions
DS-CPL — CPL Qualified Debug Store

MONITOR — MONITOR/MWAIT

DTES64 — 64-bit DS Area
PCLMULQDQ — Carryless Multiplication

SSE3 — SSE3 Extensions

D Reserved

OM16524b

Figure 3-6. Feature Information Returned in the ECX Register

CPUID—CPU ldentification

Vol.2A 3-213

INSTRUCTION SET REFERENCE, A-L

Table 3-20. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1 pcLMULQDQ PCLMULQDAQ. A value of 1 indicates the processor supports the
PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS
area using 64-bit layout

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the
processor supports this technology. See Chapter 5, “Safer Mode
Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates
that the processor supports this technology.

8 ™2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental
Streaming SIMD Extensions 3 (SSSE3). A value of O indicates the
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of O
indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode)
for details.

11 Reserved Reserved

12 FMA A value of 1 indicates the processor supports FMA extensions
using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature
is available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes” section in this chapter for a description.

14 xTPR Update XTPR Update Control. A value of 1 indicates that the processor

Control supports changing IA32_MISC_ENABLE[bit 23].
15 PDCM Perfmon and Debug Capability: A value of 1 indicates the

processor supports the performance and debug feature indication
MSR IA32_PERF_CAPABILITIES.

3-214 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-20. Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the
processor supports PCIDs and that software may set CR4.PCIDE
to 1.

18 DCA A value of 1 indicates the processor supports the ability to
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC
feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE
instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT
instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer
supports one-shot operation using a TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI
instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the
XSAVE/XRSTOR processor extended states feature, the
XSETBV/XGETBV instructions, and XCRO.

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV
instructions to access XCRO, and support for processor extended
state management using XSAVE/XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction
extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-
point conversion instructions.

30 RDRAND A value .of 1 indicates that processor supports RDRAND
instruction.

31 Not Used Always returns 0.

CPUID—CPU Identification

Vol.2A 3-215

INSTRUCTION SET REFERENCE, A-L

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 O

EDX

PBE-Pend. Brk. EN.J
TM-Therm. Monitor
HTT-Multi-threading ——
SS-Self Snoop

SSE2-SSE2 Extensions
SSE-SSE Extensions
FXSR-FXSAVE/FXRSTOR
MMX-MMX Technology ———————
ACPI-Thermal Monitor and Clock Ctrl
DS-Debug Store

CLFSH-CFLUSH instruction

PSN—Processor Serial Number

PSE-36 — Page Size Extension
PAT—-Page Attribute Table

CMOV-Conditional Move/Compare Instruction
MCA—Machine Check Architecture

PGE-PTE Global Bit

MTRR-Memory Type Range Registers
SEP-SYSENTER and SYSEXIT

APIC-APIC on Chip

CX8-CMPXCHGSB Inst.

MCE-Machine Check Exception

PAE-Physical Address Extensions
MSR-RDMSR and WRMSR Support

TSC-Time Stamp Counter

PSE—-Page Size Extensions

DE-Debugging Extensions
VME-Virtual-8086 Mode Enhancement

FPU—x87 FPU on Chip

D Reserved

OM16523

Figure 3-7. Feature Information Returned in the EDX Register

3-216 Vol.2A

CPUID—CPU Identification

Table 3-21.

INSTRUCTION SET REFERENCE, A-L

More on Feature Information Returned in the EDX Register

Bit #

Mnemonic

Description

0

FPU

Floating Point Unit On-Chip. The processor contains an x87 FPU.

1

VME

Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements,
including CR4.VME for controlling the feature, CR4.PVI for protected mode
virtual interrupts, software interrupt indirection, expansion of the TSS with
the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

DE

Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

PSE

Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

TSC

Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

MSR

Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR
and WRMSR instructions are supported. Some of the MSRs are
implementation dependent.

PAE

Physical Address Extension. Physical addresses greater than 32 bits are
supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4
Mbyte pages if PAE bit is 1.

MCE

Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define
the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may
have to depend on processor version to do model specific processing of the
exception, or test for the presence of the Machine Check feature.

CX8

CMPXCHGS8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

APIC

APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFEOOOOH to FFFEOFFFH (by default - some processors
permit the APIC to be relocated).

10

Reserved

Reserved

11

SEP

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.

12

MTRR

Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR
contains feature bits that describe what memory types are supported, how
many variable MTRRs are supported, and whether fixed MTRRs are
supported.

CPUID—CPU ldentification

Vol.2A 3-217

INSTRUCTION SET REFERENCE, A-L

Table 3-21. More on Feature Information Returned in the EDX Register (Contd.)
Bit # | Mnemonic | Description

13 | PGE Page Global Bit. The global bit is supported in paging-structure entries that
map a page, indicating TLB entries that are common to different processes
and need not be flushed. The CR4.PGE bit controls this feature.

14 | MCA Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting in P6 family, Pentium
4, Intel Xeon processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15 | CMOV Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16 | PAT Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an
operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 | PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory
beyond 4 GBytes are supported with 32-bit paging. This feature indicates
that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited
by MAXPHYADDR and may be up to 40 bits in size.

18 | PSN Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.

19 | CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved | Reserved

21 DS Debug Store. The processor supports the ability to write debug information
into a memory resident buffer. This feature is used by the branch trace
store (BTS) and precise event-based sampling (PEBS) facilities (see Chapter
23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32
Architectures Software Developer's Manual, Volume 3().

22 | ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be
monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 | MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 | FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions are supported for fast save and restore of the floating point
context. Presence of this bit also indicates that CR4.0SFXSR is available for
an operating system to indicate that it supports the FXSAVE and FXRSTOR
instructions.

3-218 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-L

Table 3-21. More on Feature Information Returned in the EDX Register (Contd.)

Bit # | Mnemonic | Description

25 | SSE SSE. The processor supports the SSE extensions.
26 | SSE2 SSE2. The processor supports the SSE2 extensions.
27 |SS Self Snoop. The processor supports the management of conflicting memory

types by performing a snoop of its own cache structure for transactions
issued to the bus.

28 |HTT Max APIC IDs reserved field is Valid. A value of O for HTT indicates there is
only a single logical processor in the package and software should assume
only a single APICID is