
Xeno Kovah - 2010
xkovah at gmail

1

BINARIES
Part 1

All materials are licensed under a Creative
Commons “Share Alike” license.

•  http://creativecommons.org/licenses/by-sa/3.0/

2

3

This is what you're
going to learn! :D

PE Image by Ero Carrera http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf

This is madness!

Whatcha gonna do, cry about it?

4

THIS! IS!
LIFE OF BINARIES!

(It's funnier if you already took Intermediate x86)

About Me

•  Security nerd - generalist, not specialist
•  Mac OS person who’s had to learn Windows

for work. And if I have to learn something, I
may as well learn it well.

5

About You?

•  Name
•  Title & Department
•  Prior exposure to binary formats?
•  Ever taken a compilers class?

6

Agenda

•  Day 1 - Part 1 - Lexing, Parsing, CFGs,
ASTs, AATs, BLTs, generating
assembly, MICs, KEYs, MOUSEs!

•  Day 1 - Part 2 - Portable Executable
(PE) files

•  Day 2 - Part 1 - PE files continued,
Executable and Linking Files (ELF)

•  Day 2 - Part 2 - Linking, Loading,
Dynamic Linking, Executing. Packers,
Viruses, DLL injection, general fun.

7

Miss Alaineous

•  Questions: Ask ‘em if you got ‘em
–  If you fall behind and get lost and try to tough it out until you

understand, it’s more likely that you will stay lost. So ask
questions ASAP, even if you're just confirming something
you think you already know.

•  Browsing the web and/or checking email during class
is a good way to get lost ;)

•  Vote on class schedule.
•  Benevolent dictator clause.

8

Class Scope

•  The class will cover the stages which a program goes
through from being some C source code until being
assembly running natively on a processor.
–  Not covering interpreters or software virtual machines (e.g.

java)
•  This knowledge is useful to people who are trying to

reverse engineer programs which potentially
manipulate the process (e.g. packers). It also has
applicability to understanding attack techniques (e.g.
DLL injection) used in tools like Metasploit.
–  The more you know about forward engineering, the more

you know about reverse engineering.

9

Class Scope 2

•  Personally I’ve used the knowledge
extensively for defensive purposes, in
order to do memory integrity verification.

•  While we are covering the entire lifecycle,
so that people can get the complete
picture, the emphasis will be more on the
point at which a program becomes
formatted according to some well-defined
executable binary specification.

10

Life of Binaries Overview

Compiler
Source
Code Linker Binary

Binary Loader

Libraries Libraries Libraries

Running
Program

11

Source
Code
Source
Code

Object
File
Object

File
Object

File

Mega-disclaimer

•  I never had a compilers class :(
–  It was either that or crypto, and I wanted to focus

on security classes (to the detriment of this one
fundamental element of computing)

•  Therefore I am less of an expert on this than
many sophomore CS undergrads
–  But I've still managed to pick up a lot of it through

working on projects which were peripherally
related

–  So as usual, I read books and notes and slides
and am doing some gross summarization

12

Compiler Overview

13

Lexical
analyzer

Syntax
analyzer

Symbol
table

Intermediate
code generator

Optimization

Code
generator

Object
File

Source
Code

Diagram outline adapted from "Concepts of Programming Languages 4th ed." Figure 1.3 page 28

Linker Overview

14

Object file a
Headers

Code chunk 1
Code chunk 2

Object file b

Data chunk
Other chunk

Headers
Code chunk
Data chunk

Other chunk 1
Other chunk 2

Headers
Code chunk 1a
Code chunk 2a
Code chunk 1b
Data chunk a Linker
Data chunk b
Other chunk a

Other chunk 1b
Other chunk 2b

Executable or
library

Loader Overview

15

Files on Disk

Code
Data
Import MyLib1
Import MyLib2
Import LibC

Code
Data

Import MyLib2
…

WickedSweetApp.exe

Code
Data

…

MyLib1.dll

MyLib2.dll

Virtual Memory
Address Space

Kernel

Userspace

WickedSweetApp.exe

Executable Loader

MyLib1.dll

MyLib2.dll

LibC

Stack

Heap

Compiler Drilldown

•  Why bother?
•  I think there's usefulness in seeing the

full sequence of application creation,
starting right at the beginning. The more
you know about each phase the more
the pieces of knowledge reinforce each
other.

•  Some of the knowledge will be
applicable to other security areas for
instance.

16

Syntax & Semantics

•  (Taken from Concepts of Programming Languages
4th edition (which I will henceforth refer to as CPLv4)
page 107)

•  "The syntax of a programming language is the form
of its expressions, statements, and program units."

•  "Its semantics is the meaning of those expressions,
statements, and program units"

•  "For example, the syntax of a C if statement is
! !if (<expr>) <statement>
 The semantics of this statement form is that if the
current value of the expression is true, the embedded
statement is selected for execution."

17

Compiler Overview

18

Lexical
analyzer

Syntax
analyzer

Symbol
table

Intermediate
code generator

Optimization

Code
generator

Object
File

Source
Code

Diagram outline adapted from "Concepts of Programming Languages 4th ed." Figure 1.3 page 28

Lexical Analysis aka Lexing aka
Tokenizing

•  Can be done with *nix tool Lex, FLEX
(GNU lex), ANTRL (www.antlr.org), etc

•  Turning a stream of characters into a
stream of distinct lexemes, separated
by some delimiter (often whitespace.)

•  Tokens are then categories of lexemes.
There can be many lexemes to a given
token, or possible a single lexeme for a
given token.

19

lexemes and tokens

•  For the following statement (taken from CPLv4 pgs.
107/108)

•  index = 2 * count + 17;
•  The lexemes and tokens might be:
lexeme token
index identifier
= equal_sign
2 int_literal
* mult_op
count identifier
+ plus_op
17 int_literal
; semicolon

20

Compiler Overview

21

Lexical
analyzer

Syntax
analyzer

Symbol
table

Intermediate
code generator

Optimization

Code
generator

Object
File

Source
Code

Diagram outline adapted from "Concepts of Programming Languages 4th ed." Figure 1.3 page 28

Syntactic Analysis & Context Free
Grammars (CFGs)

•  Done with tools like YACC (yet another compiler
compiler), Bison (GNU yacc), ANTLR, or CUP (for java)

•  A way to formally specify a syntax
•  A commonly used form is Backus-Naur form (BNF)
•  A grammar in BNF will be a series of rules, composed of

terminal symbols, and non-terminal symbols. An example
rule for an assignment statement might look like:

•  <assign> -> <var> = <expression>
•  The -> will be used to indicate that the symbol on the left

hand side can be represented by the statement on the
right hand side.

•  The < and > are used to enclose a non-terminal
•  In the above the = is a terminal. Terminals can also be

given by tokens.
•  Of course, for the above to be of any use, you then need

rules to describe how <var> and <expression> are formed
22

Mo gramma mo betta

•  Rules can also have multiple possible right
hand sides. These will often be specified
on a new line started by |

•  There will generally be a special start
symbol which we'll call <program>

•  In order to be able to specify arbitrarily
long lists, you can use recursion in a rule.
E.g.

•  <ident_list> -> identifier
 | identifier , <ident_list>

23

Simple Grammar for Assignment Statements
(CPLv4 page 113)

<assign> -> <id> = <expr>
<id> -> A

 | B
 | C

<expr> -> <id> + <expr>
 | <id> * <expr>
 | (<expr>)
 | <id>
 24

Deriving a statement from the grammar
(CPLv4 page 113)

•  A = B * (A + C)
•  <assign> -> <id> = <expr>

 A = <expr>
 A = <id> * <expr>
 A = B * <expr>
 A = B * (<expr>)
 A = B * (<id> + <expr>)
 A = B * (A + <expr>)
 A = B * (A + <id>)
 A = B * (A + C)

25

Parse Trees
(aka Concrete Syntax Tree)

(Picture from CPLv4 page 114)

26

This is the parse tree for
the sequence on the previous page,
except I changed stuff to = from :=

Syntax Graphs
(from http://www.json.org)

<number>
<int>
| <int> <frac>
int exp
int frac exp

<int>
digit
digit1-9 digits
- digit
- digit1-9 digits

<frac>
. digits

exp
e digits

digits
digit
digit digits

e
e
e+
e-
E
E+
E- 27

I just did a search for "futuristic rifle" and got this :D
JSON Number syntax graph and FNH FS2000 -
Separated at birth?
From http://en.wikipedia.org/wiki/FN_F2000

Confession

•  I think syntax graphs look very elegant
•  I demand that my wife dress in syntax graphs

when we go out for a night on the town.
•  Syntax graphs also make great kid's play-mats

at a restaurant. "Hey kids! Follow the JSON
number maze to find the number -16.32e-98!"

•  Syntax diagrams are so great for the whole
family, I don't know why Parker Brothers hasn't
turned them into a board game yet! Shoots/
Snakes and Ladders would be way awesomer
with syntax graphs.

•  Syntax graphs! Now that's what I call Real
Ultimate Power!!!

28

Misc use

•  JSON is all about the syntax
(www.json.org)

•  SQL grammar randomization
•  Reading RFCs

– They often use Augmented BNF form as
specified by RFC 4234

– RCF 3261, Session Initiation Protocol (SIP)
used and converting its definitions to ABNF
http://www.tech-invite.com/Ti-abnf-sip.html

29

Digression: RFC 3261

•  Session Initiation Protocol (SIP)
•  generic-message = start-line

*message-header
CRLF
[message-body]

•  start-line = Request-Line / Status-Line
•  Request-Line = Method SP Request-URI SP

SIP-Version CRLF
•  But then Method is defined as sort of a cop out

by using a bunch of English description.
Instead you can get a full ABNF description
here: http://www.tech-invite.com/Ti-abnf-
sip.html

30

More Info on Source to assembly to
object file transition

•  Take a compilers class :P
•  http://www.cs.usfca.edu/~galles/

compilerdesign/cimplementation.pdf
•  http://en.wikipedia.org/wiki/

Dragon_Book_(computer_science)

31

Abstract Syntax Trees (ASTs)

•  ASTs are a condensed/simplified form of the
parse tree where the operators are internal
nodes and never leaves.

•  ASTs are more convenient form for subsequent
stages to work with.

•  Rather than having a grammar parser which
just generates a parse tree and then converts it
to an AST, you can create a parser which
converts the input directly to an AST. This is
called syntax-directed translation (and it's the
shield the knight on the Dragon Book is
holding ;)). In order to do that, the parser needs
to be able to call some code to perform some
action when it recognizes things.

32

Aside: Phrack Your AST

•  Big Loop Integer Protection
•  http://www.phrack.com/issues.html?issue=60&id=9
•  Phrack article on trying to prevent integer overflow

exploits by extending the compiler to hacking the
AST to "evaluate if a loop is about to execute a
'Huge' number of times. (defined by LIBP_MAX).
Each time a loop is about to execute, the
generated code verifies that the loop limit is smaller
than the threshold. If an attempt to execute a loop
more than the threshold value is identified, the
__blip_violation() handler will be called instead of
the loop, leading to a controlled termination of the
processes."

•  Simple, and he admits it misses some things, but
still…behold the power of knowledge :)

33

AST Vs. Parse Tree

34

A

B

A C

+

*

:= AST

(CPLv4 page 114)

A slightly more complex example
before we move on

(from http://www.cs.sfu.ca/~anoop/courses/CMPT-379-Fall-2007/abstract.pdf)

35

A slightly more complex example
before we move on 2

(from http://www.cs.sfu.ca/~anoop/courses/CMPT-379-Fall-2007/abstract.pdf)

36

The main thing I want you to see is how
an AST can have things like functions
and parameters encapsulated in it

Compiler Overview

37

Lexical
analyzer

Syntax
analyzer

Symbol
table

Intermediate
code generator

Optimization

Code
generator

Object
File

Source
Code

Diagram outline adapted from "Concepts of Programming Languages 4th ed." Figure 1.3 page 28

AST to Intermediate Representation (IR)

•  You can then fill in the parts of the tree with a simplified IR
pseudo-assembly language, or a real assembly language.
What I mean by "pseudo-assembly language" is
something which looks more or less like most assembly
languages look, but which is not something any hardware
understands.

•  The benefit of using the IR is that the optimization can be
done at this level, rather than only when dealing with the
possibly complex real assembly language (like x86/CISC).
(A good optimizer will optimize both the IR and the final
assembly with assembly-specific optimization guidance,
like the "Intel 64 and IA-32 Architectures Optimization
Reference Manual")

•  We're not going to cover the optimization stage in this
class.

38

Different Levels of IR

•  http://dragonbook.stanford.edu/lecture-
notes/Stanford-CS143/16-Intermediate-
Rep.pdf

39

Fairly language
dependent

Ideally language
and machine
independent

Fairly machine
dependent

Code to Generate IR from AST
http://dragonbook.stanford.edu/lecture-notes/Stanford-CS143/16-Intermediate-Rep.pdf

40

Using Code to Generate IR from AST
http://dragonbook.stanford.edu/lecture-notes/Stanford-CS143/16-Intermediate-Rep.pdf

41

a + (b - c) * d

(It's sometimes helpful to think about the AST in prefix/postfix
operator form, rather than infix, since you can see that's kind of how
the code ends up getting generated)

a ((b c -) d *) +

Different Paths to Code Generation

42

Abstract Syntax
Tree (AST)

Abstract Assembly
Tree (AAT)

Intermediate Representation (IR)
Assembly Language

Machine Code
Assembly Language

Going to show
this path next, since I
have a good
example document

Saw a quick
example of this

Abstract Assembly Trees (AATs)

•  Once you have an AST, it is useful to generate an
AAT

•  There are two subtypes of an AAT, Expression
Trees (for values) and Statement Trees (for
actions). You can think of the result of expression
trees as being some value which is put on the
stack when the tree is processed and collapsed.
And the result of statement trees are the
organization of which code goes where.

•  Highly recommend the more detailed AAT
examples here: http://www.uogonline.com/drlee/
CS410/Original-Slides/Chap8.java.pdf which I am
partially drawing from for the following discussion.

43

Constant Expression Trees

•  Constant(4), Constant(0xBEEF), etc
•  In x86 we call constants embedded in

the instruction stream "immediates"

44

Register Expression Trees

•  Register(Frame Pointer) = Register(FP)
•  Register(Stack Pointer) = Register(SP)
•  Register(SomeTempRegister), where

SomeTempRegister eventually gets
translated into a machine-specific register

•  Register(Result Register)
•  By convention on x86 we would know that

eventually that should turn into the EAX
register, since that's where function result/
return values are stored

 45

Operator Expression Trees

•  Now we actually have a tree. The root
would be the operator, and the right and
left subtrees/leaves are the operands

•  Operators are things like +, -, *, /, <, ≤,
>, ≥, &&, ||, !, ==

46

+

Register(Reg1) Constant(4)

>

Register(FP)

Register(SP)

-

Constant(0x20)

Memory Expression Trees

•  Indicates dereferencing some memory
address, and returning whatever's in
memory at that address.

47

Memory

Constant(0x12FFD0)

Returns whatever's
in memory at address
0x12FFD0

Memory

-

Register(FP) Constant(4)

Returns whatever's in memory at the address
given by the frame pointer (ebp on x86)
minus 4. From Intro x86 we might think that
could be one of the local variables of a function.

Call Expression Trees
•  Shown with the name, and then a sub-expression for each

of the input parameters.
•  Recall that all expression trees put some value onto the

stack, so remember that the return value from the call is
put onto the stack.

48

Example: add(2, 3)

CallExpression("add")

Constant(2) Constant(3)

CallExpression("printf")

Constant(0x41573C) Memory

-

Register(FP) Constant(4)

Example: printf("a = %d, %d", a, 1)

Constant(1)
Address of the static
location where the
format string
is stored

Address of the local
variable a

Move Statement Trees

•  Switching gears to Statement trees. They
are used to achieve some goal, not to
return some value. Their values can come
from some Expression subtrees.

•  Move tree puts data (from register,
memory, or constant) into a register or
memory. Note, this doesn't prevent
memory to memory move which can't be
done with a normal x86 MOV instruction.

•  The left subtree is the destination, and the
right subtree is the source. This is like with
Intel syntax assembly.

49

Move Statement Trees 2

50

Move

Register(Reg1) Constant(0xf005ba11)

Move

Memory

-

Register(FP) Constant(8)

Memory

-

Register(FP) Constant(4)

a = b;

Move

Register(Reg1) Register(Reg2)

a b

Register(Reg1)

Label & Jump Statement Trees

•  Label nodes represents an assembly label
(which you might also think of just like a normal
label in C). Used for things like jumps,
conditional jumps, and calls.

•  Jump trees are an unconditional jump to the
given label

51

Label("SomeLabel") Jump("SomeLabel") Scintillating,
yes?

from http://tfwiki.net/wiki/
Image:Deathshead113heardofme.jpg

Conditional Jump Statement Trees

•  An unconditional jump to the given
label. The jump is taken if the sub-
expression evaluates to true. If not, then
the the entire statement is a no-op.

52

CondJump("SomeLabel") Label("SomeLabel")

Move ==

Register(Reg1) Constant(10) Register(Reg1) Constant(0)

Sequential Statement Trees
•  Just execute the left subtree and then the right subtree.

Used to maintain ordering of statements. This differs from
the AST where whatever was at the leaves furthest from
the root was supposed to occur first. But one can see how
we would just order from AST to AAT appropriately.

53

CondJump("MyLabel")

Label("MyLabel")

Move

==

Register(Reg1) Constant(10)

Register(Reg1) Constant(0)

Sequential

Sequential

Label("Done")

Jump("Done")

Sequential

Sequential

What is some
pseudo-code for
this?

Move

Register(Reg2) Register(Reg1)

Sequential Statement Trees
•  Just execute the left subtree and then the right subtree.

Used to maintain ordering of statements. This differs from
the AST where whatever was at the leaves furthest from
the root was supposed to occur first. But one can see how
we would just order from AST to AAT appropriately.

54

CondJump("MyLabel")

Label("MyLabel")

Move

==

Register(Reg1) Constant(10)

Register(Reg1) Constant(0)

Sequential

Label("Done")

Jump("Done")

Sequential

Sequential

What is some
pseudo-code for
this?

Move

Register(Reg2) Register(Reg1)

Call Statement Trees
•  Basically the exact same thing as call expression trees, except

that statements don't return a value and expressions do. So you
can think of this like calls to functions which return void.

•  Now that you've seen Labels, you can think of the function name
being called as just a target label.

•  Documentation we see later calls the Call Statement a
"Procedure Call" and Call Expressions as "Function Call". Meh. I
prefer to continue with the statement vs. expression
differentiation.

55

void ThereNowFollowsAnOwl(int a, int b); //declaration/prototype
ThereNowFollowsAnOwl(0,0); //actual use

CallStatement("ThereNowFollowsAnOwl")

Constant(0) Constant(0)

Compiler Overview

56

Lexical
analyzer

Syntax
analyzer

Symbol
table

Intermediate
code generator

Optimization

Code
generator

Object
File

Source
Code

Diagram outline adapted from "Concepts of Programming Languages 4th ed." Figure 1.3 page 28

AAT Direct To x86 Assembly
•  http://www.cs.usfca.edu/~galles/compilerdesign/x86.pdf
•  To go from AAT to assembly, we use a "tiling strategy"

whereby we group portions of the AAT and generate
assembly for them. The above link shows a tiling
strategy for directly outputting non-optimal, but simple
and straightforward to understand x86 assembly code,
so that's why we're going to use it.

•  I recommend reading http://www.uogonline.com/drlee/
CS410/Original-Slides/Chap8.java.pdf and http://
www.uogonline.com/drlee/CS410/Original-Slides/
Chap9.java.pdf and maybe http://www.cs.cornell.edu/
courses/cs4120/2009fa/lectures/lec17-fa09.pdf at the
same time as the above so that you can see
complimentary instances of the simple tiling strategy and
then the more advanced ones.

57

Constant/Register Expressions

•  For any Constant(x) we will emit the x86
instruction "push x"

•  Constant(5) = "push 5"
•  For Register() expressions, what

register we will emit will depend on
whether it's something special or not,
but for now we'll assume we're just
dealing with the special ones below.

•  Register(FP) = "push ebp"
•  Register(SP) = "push esp"

58

Operator Expressions
(remember: for expression trees, we want the result value on top of the stack when the asm is done)

59

+

Register(FP) Constant(4)

This is in keeping with the simple method for the Register and Constant expressions,
where the result of collapsing the tree is just put on the top of the stack

push ebp
push 4
pop eax
add [esp],eax

Operator Expressions
(remember: for expression trees, we want the result value on top of the stack when the asm is done)

60

We didn't learn about the "SETcc" group of instructions in the x86 classes, but all it
does is set the specified destination to 1 if the condition holds, and 0 if it doesn't. setg
like a jg (jump if greater) is a "set if greater", and then it's obviously putting the result
on the top of the stack

>

Register(FP) Constant(4)

push ebp
push 4
pop eax
cmp [esp],eax
setg [esp]

Memory Expressions
(remember: for expression trees, we want the result value on top of the stack when the asm is done)

61

+

Register(FP) Constant(4)

push ebp
push 4
pop eax
add [esp], eax

Memory

mov eax, [esp]
mov eax, [eax]
mov [esp], eax

Just need to dereference whatever's on
the top of the stack and store it back to
the top of the stack

Call Expressions
(remember: for expression trees, we want the result value on top of the stack when the asm is done)

62

CallExpression("Foo")

Constant(1) Constant(5)

push 5
push 1
call Foo
add esp, 8
push eax

• Note that we changed the ordering of traversal of
the graph to push the parameters in the x86
expected right to left order

• The "add esp, 8" is indicative of the cdecl calling convention (as we
learned in Intro x86), and the 8 would just be an assumed 4 byte size
per parameters multiplied by the number of parameters pushed.

• How would the assembly be different if this was a call statement?

• How would the assembly be different if this was a stdcall calling convention?

Move (to Register) Statements
(remember: for statement trees, we just want to perform some action, no net changes to the stack should occur)

63

Move

Register(Reg1) Constant(4)

push 4
pop Reg1

Note that the stack is empty at the end.
Because Statement trees don't result in values,
they just cause actions.

Move (to Memory) Statements
(remember: for statement trees, we just want to perform some action, no net changes to the stack should occur)

(I'm pretty sure the x86.pdf is wrong for this case so I substituted my own code)

64

Move

Memory Constant(4)

push 4
push Reg1

Register(Reg1)

pop eax
pop ebx
mov [ebx], eax Note that the stack is empty at the end.

Because Statement trees don't result in values,
they just cause actions.

Labels & Jump Statements

•  For Label("SomeLabel") we just output
"SomeLabel:" which will be an assembly
label.

•  For Jump("SomeLabel") we just output
"jmp SomeLabel" (assuming the
assembler will handle the generation of
the correct behind the scenes relative or
absolute jump.)

65

Conditional Jump Statements
(remember: for statement trees, we just want to perform some action, no net changes to the stack should occur)

66 66

>

Register(FP) Constant(4)

push ebp
push 4
pop eax
cmp [esp],eax
setg [esp]

CondJump("SomeLabel")

pop eax
cmp eax, 0
jg SomeLabel

Note that the stack is empty at the end.
Because Statement trees don't result in values,
they just cause actions.

And the rest

•  I have left out a ton of things, and didn't go over
any of the more optimal tiling strategies. So
again, if you're interested in more details, I
really like these slides and encourage you to
read them:

•  http://www.uogonline.com/drlee/CS410/
Original-Slides/Chap8.java.pdf

•  http://www.uogonline.com/drlee/CS410/
Original-Slides/Chap9.java.pdf

•  http://www.cs.usfca.edu/~galles/
compilerdesign/x86.pdf

•  http://www.cs.cornell.edu/courses/
cs4120/2009fa/lectures/lec17-fa09.pdf

67

Compiler Overview

68

Lexical
analyzer

Syntax
analyzer

Symbol
table

Intermediate
code generator

Optimization

Code
generator

Object
File

Source
Code

Diagram outline adapted from "Concepts of Programming Languages 4th ed." Figure 1.3 page 28

Symbols

•  I added the dashed line from the symbol
table to the object file just to say that
generally there will be *some* form of
symbol table in the object file. It need not
be exactly the same as is used in the other
stages, but there will be something.

•  The symbols table is basically a little
database where the various stages can
store information about the names & types
of variables & functions.

69

Organizing Code/Data Into an
Object File

•  The compiler is going to spit out some code and possibly global/
static data that the code needs to operate. If anything is going to
treat the output file as something more than a binary blob, there
must necessarily be some file format that the code and data is
written into which minimally says what part is the code and what
part is the data.

•  However, most object files are not going to be able to
completely stand alone, because most single source files are
not complete standalone programs. Therefore, another thing
that would need to be specified in the object file is what external
code or data this file depends on (because the original source
code depended on.) In most languages there are ways to
specify that the code depends on something external by using
keywords like "import", "include", "extern", or even just calling a
function name which the compiler doesn't find defined in the
symbols for that source file, which is combined with the previous
hints in terms of where to find the implicitly defined symbol.

70

Organizing Code/Data Into an
Object File 2

•  So the compiler and linker must therefore have
some protocol/format specification embedded
in the object file whereby the compiler knows it
can say "this code needs to access this
symbol" (whether the symbol is code or data),
and the linker then knows how to search for
these unresolved symbols at link time when it's
putting all the objects together into a final
binary.

•  When the linker can't that's obviously where
"unresolved symbol <bla>" errors come from.

•  Also this sort of implies that the object files
need to be able to say "yeah, I have that
symbol, and it's located within my binary here"

71

Quick Example:
SimpleSimonTheThird

•  This is jumping ahead slightly because
it shows some info about binary
formats, but I just felt like justifying the
claim about contained and uncontained
symbols.

72

SimpleSimonTheThird.o
(readelf -s to print symbol table)

 Num: Value Size Type Bind Vis Ndx Name!
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND !
 1: 00000000 0 FILE LOCAL DEFAULT ABS

SimpleSimonTheThird.c!
 2: 00000000 0 SECTION LOCAL DEFAULT 1 !
 3: 00000000 0 SECTION LOCAL DEFAULT 3 !
 4: 00000000 0 SECTION LOCAL DEFAULT 4 !
 5: 00000000 0 SECTION LOCAL DEFAULT 5 !
 6: 00000000 0 SECTION LOCAL DEFAULT 7 !
 7: 00000000 0 SECTION LOCAL DEFAULT 6 !
 8: 00000000 61 FUNC GLOBAL DEFAULT 1 main!
 9: 00000000 0 NOTYPE GLOBAL DEFAULT UND getPie!
10: 00000000 0 NOTYPE GLOBAL DEFAULT UND puts!

73
printf equivalent

Undefined symbols

PieMan.o
(readelf -s to print symbol table)

Num: Value Size Type Bind Vis Ndx Name!
0: 00000000 0 NOTYPE LOCAL DEFAULT UND !
1: 00000000 0 FILE LOCAL DEFAULT ABS PieMan.c!
2: 00000000 0 SECTION LOCAL DEFAULT 1 !
3: 00000000 0 SECTION LOCAL DEFAULT 2 !
4: 00000000 0 SECTION LOCAL DEFAULT 3 !
5: 00000000 0 SECTION LOCAL DEFAULT 5 !
6: 00000000 0 SECTION LOCAL DEFAULT 4 !
7: 00000000 23 FUNC GLOBAL DEFAULT 1 getPie!

74

SimpleSimonTheThird.obj

75

main() is in section .text,
offset 0

no section!
Therefore external

no section!
Therefore external

PieMan.obj

76

getPie() is in section .text,
offset 0

Git along lil doggie!

•  We're going to get back into more about
compiler options, linker options, and
linking after we see more about the
binary formats which are used to store
binaries pre and post-linking.

77

